Future Circular Collider Study Status and Plans

E-JADE

M. Benedikt and F. Zimmermann gratefully acknowledging input from FCC coordination group, global design study team and all other contributors

http://cern.ch/fcc

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain,** grant agreement no. 764879; **ARIES**, grant agreement 730871; and **E-JADE**, contract no. 645479

SPS

EASITrain

LHC

HE-LHC

Eur CirCol

FCC

propean bommission bhoto: J. Wenninger

- FCC-ee, HE LHC, FCC-hh progress
 - Focus on areas highlighted by IAC and technical advances
- CE status and schedule considerations
- Further planning

hh ee he

Future Circular Collider (FCC) Study

International FCC collaboration (CERN as host lab) to study:

- pp-collider (FCC-hh) \rightarrow main emphasis, defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km
 - ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (*FCC-ee*), as potential first step
- **HE-LHC** with *FCC-hh* technology
- p-e (FCC-he) option, IP integration, e- from ERL

Experiments

FCC-ee collider parameters

parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

lepton collider luminosities

nh ee he

FCC-ee operation model

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4
Z later	200	52 ab ⁻¹ /year		
W	25	7 ab ⁻¹ /year	10 ab ⁻¹	1
Н	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3
machine modification for RF installation & rearrangement: 1 year				
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1
top later (365 GeV)	1.4	0.36 ab ⁻¹ /year	1.5 ab ⁻¹	4

total program duration: 14 years - including machine modifications phase 1 (*Z*, *W*, *H*): 8 years, phase 2 (top): 6 years

FCC-ee Physics and Experiments

1. Evaluation of precision measurements for FCC-ee operation plan

-- ex: **Z, W scan strategies defined.** Masses can be measured to ±0.1 MeV, ±0.6 MeV (all errors) resp. i.e. 20-fold improvement

2. Physics interpretation will not be limited by theoretical prediction

- -- all 'parameters' can be internally measured at FCC-ee : m_{top} , m_H , $\alpha_{QED}(m_z)$, $\alpha_s(m_z)$, m_Z
- -- theoretical calculations can match the precision but require dedicated effort as part of next step in the study.

3. Great progress made on detectors

- -- CLIC-like-Detector (CLD) adapted to FCC-ee:
 - lower (2T) mag. field, larger tracker, smaller beam pipe
 - Full simulation! similar performance achieved as CLIC model
 - provides excellent baseline solution.
- -- FCC-ee dedicated detector (International Detector Electron Accelerators)
 - now defined and simulations started (tracker)
 - well suited to bunch crossing rate
 - transparent and cost efficient
 - «slice» of critical element will be in T4 test beam in Sept. 2018 →

FCC-ee MDI & Detector

VTX: 4-7 layers

<u>Wire Drift Chamber:</u> 4 m long, R 30-200 cm He 90% - iC4H10 10% 1cm drift, <400ns

Outer Silicon Layer

thin SC Coil inside calos.: 2 T, R~2 m 0.79X₀

Preshower: ~ 1-2 X0

Dual Readout calorimeter $2 \text{ m}/7\lambda_1$

Yoke / muon chamber

FCC Status Michael Benedikt 4th FCC Week, Amsterdam, 9 April 2018

FCC-ee RF staging scenario

WP	V _{rf} [GV]	#bunches	I _{beam} [mA]	
Z	0.1	16640	1390	
W	0.44	2000	147	
н	2.0	393	29	
ttbar	10.9	48	5.4	
"high-gradient" vs high-current machine				

three sets of RF cavities to cover all options for FCC-ee & booster:

- high intensity (Z, FCC-hh): 400 MHz mono-cell cavities (4/cryom.)
 - higher energy (W, H, t): 400 MHz four-cell cavities (4/cryomodule)
- ttbar machine complement: 800 MHz five-cell cavities (4/cryom.)
- installation sequence comparable to LEP (≈ 30 CM/shutdown)

SRF cavity development (examples)

5-cell 800 MHz cavity, JLAB prototype for both FCC-ee (t-tbar) & FCC-eh ERL

Seamless 400 MHz single-cell cavity formed by spinning at INFN-LNL

Tooling fabricated and successfully tested with an Aluminium cavity.

† We're very saddened about the sudden death of Vincenzo Palmieri a month ago.

CERN half-cells formed using Electro-Hydro-Forming (EHF) at Bmax.

High strain rate technology using shockwaves in water from HV discharge. EHF investigated for half-cells and

seamless Nb and Cu cavities.

CERN

Low-power low-cost design for FCC-ee dipoles

1.0 T

first 1 m long prototype

Twin-dipole design with 2× power saving 16 MW (at 175 GeV), with Al busbars

the twin behaviour is confirmed: more measurements are planned for the low field effects and the multipoles

h ee he

Low-power twin design for FCC-ee quadrupoles

twin F/D design with 2× power saving 25 MW (at 175 GeV), with Cu conductor

first 1 m long prototype magnetic measurements pending

h ee he

FCC-ee arc vacuum prototyping & integration

- CAD model of the1m-long twin dipole and quadrupole prototypes with arc vacuum chambers.
- The chambers feature lumped SR absorbers with NEG-pumps placed next to them.
- Construction of chamber prototypes in coming months and integration with twin magnets

FCC-ee injector layout

- SLC/SUPERKEKB-like linac accelerating 1 or 2 bunches with repetition rate of 100-200 Hz
- Same linac used for positron production @ 4.46 GeV Positron beam emittances reduced in DR @ 1.54 GeV
- Injection @ 6 GeV into of Pre-Booster Ring (SPS or new ring) and acceleration to 20 GeV
- Injection to main Booster @ **20 GeV and interleaved** filling of e+/e- (below **20 min** for full filling) and continuous top-up

FCC-pp collider parameters

parameter	FCC-hh		HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100)	27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.7	5	26.7	26.7	26.7
beam current [A]	0.5	,	1.1	1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	2.2	1.15
bunch spacing [ns]	25	25	25	25	25
synchr. rad. power / ring [kW]	240	0	101	7.3	3.6
SR power / length [W/m/ap.]	28.4		4.6	0.33	0.17
long. emit. damping time [h]	0.54		1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	5 (lev.)	1
events/bunch crossing	170	1000	800	132	27
stored energy/beam [GJ]	8.4		1.3	0.7	0.36

HE-LHC integration aspects

Working hypothesis for HE LHC design: No major CE modifications on tunnel and caverns

- Similar geometry and layout as LHC machine & experiments
- Maximum magnet cryostat diameter ~1200 mm
- Maximum QRL diameter ~830 mm

Integration strategy:

- Development of optimized 16 T magnet, compatible with both HE LHC and FCC-hh
- New cryogenic layout to limit QRL dimension

16 T dipole design evolution

EuroCirCol

HE-LHC cryogenic layout

Half-sector cooling instead of full sector (as for LHC) to limit cross section of cryogenic distribution line

Higher heat load and integration limitations

- (Cryo-line diameter) requires installation of
- 8 additional 1.8 K refrigeration units wrt. LHC
 - 2.3 kW @ 1.8 K (~ LHC size)
 - P elect: ~500 kW per unit

8 new higher-power 4.5 K cryoplants

- 28 kW @ 4.5 K (including 2.3 kW @ 1.8 K)
- P elect: ~6500 kW per cryoplant (cf. 4200 kW for LHC cryoplant)

FCC-hh design – evolution since Berlin EurocirCol

• L* 40 m

- Experimental insertion adaption
- Overall lenght 1.400 m
- Optimisation work on betatron and momentum collimation systems
- Optimisation of extraction/dump line design
- Vertical extraction

FCC-hh beam power handling: collision debris

500kW debris per experiment (HL-LHC x 42)

triplets protected by 35 mm inner lining (tungsten shielding)

For 30 ab-1	max. dose	Comment
radiation in triplet	70 (40) MGy	today's limit 30 Mgy (for rotated crossing)
heat load In triplet	4.5 mW	expected limit (with safety margin) 5 mW
radiation in dipole	90 MGy unshielded	today's limit 30 MGy; better protection possible

Beam power handling: robust low-loss collimation

Complete designs of collimation insertions, main issue: sustain beam lifetime of 12 mins (12 MW loss)

Arc protection Protection design offers sufficient margin

FCC-hh reference detector

16 17 18 19 20 21

- Detector concept unchanged since last year.
- Central Solenoid, 4T, 10m free bore, unshielded
- Forward Solenoids, 4T, 5m free bore, unshielded
 - → Service cavern at 50m distance from detector cavern for magnetic shielding <0.5 mT and CE optimization.
- Silicon Tracker 400m² total surface up to η =6
- Precision momentum measurement up to $\eta=4$
- ECAL & HCAL up to η=6
- Granularity about 4x ATLAS/CMS
- Muon system for trigger, identification, momentum resolut.

Challenges:

- Pileup of 1000 vs. 140 at HL-LHC
- Radiation levels up to 10¹⁸ cm⁻² 1MeV neutron equivalent vs. 10¹⁶ cm⁻² at HL-LHC
- Total data rate of 1-1.5 PByte/s
- Integration, opening and maintenance scenarios

Global Nb₃Sn wire development program

- After one year development, prototype **Nb₃Sn wires** achieving the HL-LHC performance (~ 1000 A/mm²) already produced by several industrial partners.
- **Impressive progress** for companies starting production of internal-tin high field wire
- Innovative wire layouts proposed and produced
- Strong motivation of industrial partners and confidence on achieving performance and cost.

Conductor activities for FCC started in 2017:

- Bochvar Institute (production at TVEL), Russia
- KEK (Jastec and Furukawa), Japan
- KAT, Korea
- Columbus, Italy

nh ee he

- University of Geneva, Switzerland
- **Technical University of Vienna, Austria**
- SPIN, Italy
- University of Freiberg, Germany
- In addition, being finalized agreements with:
- **Bruker** (Germany)
- Luvata Pori (Finland)

Jastec - Japan

Kiswire KAT - Korea

Bochvar/TVEL - Russia

Internal oxidation Unige

Nb1Zr

500 µm

Nb₃Sn wound conductor tests

Cubic samples (width = 15 mm)

Relative critical current degradation as function of transversal compressive stress at room temperature

Various tests relevant for coil and magnet production, using Rutherford cable, stacks or coil blocks:

- Impact of transverse stress
- Stiffnes of reacted coil samples
- Windability of cables
- Etc.

heat treatment, load direction, Impregnation)

Cracks in Nb₃Sn subelements after applied transverse stress at RT. Microscopy by CERN MME and USTEM (Vienna)

U.S. MAGNET DEVELOPMENT 15 T dipole demonstrator (US-MDP) @ ENERGY Office of PROGRAM

Iron Laminations

AL I-Clamps

Fillers

StSt Skin

End Plates

Axial Rods

- All coil parts, structural components and tooling are available at FNAL
- Coil fabrication and the work with mechanical structure are in progress
- Magnet first test in September 2018

16 T ERMC construction at CERN

First ERMC coil winding

Coil Reaction Tool

Coil Impregnation Tool

Coil fabrication

Aluminum shell

- Winding of the first coil has been completed
- Preparation for reaction on-going
- All tooling for coil production ready

Magnet assembly

- components and tooling ready
- Dummy assembly to characterize the • structure behavior on-going.

Magnet yoke

Dummy coils

Axial rods

FCC-hh: beam screen evolution & tests (EuroCirCol hh ee he

Simplified BS design in view of:

- Mass production
- Impedance optimization
- e- cloud mitigation
- latest version to be tested summer '18

- Ribs removed; Optimization of thickness of copper and steel
- Connection absorber/cooling tube, and welding positions

- **Measurements at KARA/KIT (pressure evolution)** ٠ confirm MC vacuum simulations
- Confident to use simulations for all vacuum design

Michael Benedikt 4th FCC Week, Amsterdam, 9 April 2018

Implementation - new footprint baseline

Following geological review of the most challenging areas a new baseline position was established considering:

Lowest risk for construction

h ee he

- Fastest and cheapest construction
- Feasible positions for large span caverns (the most challenging structures)

Next step: iteration with review on surface site locations and machine layout

FCC Status Michael Benedikt 4th FCC Week, Amsterdam, 9 April 2018

CE underground schematic

as basis for CE cost and schedule study.

h ee he

FCC – tunnel integration in arcs

CE schedule studies

- Detailed study confirmed 2017 numbers
- Construction duration 5 7 years

Excavated	Spoil	Schedule

Extraction Site	Volume (m³)			
	Soft Ground	Limestone	Molasse	Total
Shaft at LHC1	11,031	0	133,735	144,765
Shaft at LHC2	0	0	202,589	202,589
Shafts at Point A	26,469	0	791,948	818,417
Shafts at Point B	35,161	0	326,482	361,643
Shaft at Point C	181,807	0	385,920	567,727
First Construction	0	0	709,452	709,452
Tunnel at Point D				
Shaft at Point D	15,992	8,806	668,961	693,760
Second	0	0	235,355	235,355
Construction				
Tunnel at Point D				
Shaft at Point E	6,528	0	174,792	181,320
Tunnel at Point F	0	1,206	375,414	376,621
Shaft at Point G	33,086		471,215	504,301
Tunnel at Point H	0	244,081	750,620	994,701
Shaft at Point H	0	7,329	421,401	428,730
Shaft at Point I	6,528	0	796,634	803,161
Shaft at Point J	6,528	0	805,629	812,157
Shaft at Point K	13,381	0	610,972	624,353
Shafts at Point L	29,990	0	671,700	701,690
Total Spoil	366,500	261,422	8,532,821	9,160,743
Volume				

Next step:

study of excavation material management

- Total of 9 million cubic meters to dispose
- Reuse of molasse?

Technical Schedule for each of the 3 options

hh ee he

Further Planning – CDR Production

- CDR Concise summary volumes 1 (PH), 2 (hh), 4 (ee), 6 (HE):
 - Completion of design work, coherent and consistent contents for concise volumes by end June 2018.
 - Overall final editing July August 2018
 - Proof reading and approval September October
 - "Print-ready" versions by November 2018
- CDR long technical volumes 3, 5, 7:
 - Collection of input (from status June 2018) during July October 2018.
 - Overall volume editing November 2018 January 2019
 - Proof reading and approval February March 2019

• Cost study based on CDR status (June 2018), other documents for ESU, June - November 2018

h ee he

FCC Week Program – IAC Review

Review Information

 All sessions marked in red / green are earmarked for phyics / machine-technical review by IAC.

hh ee he

In parallel to European Strategy process:

- Full iteration of all designs based on coherent documentation for CDR:
 - Parameters and requirements: machines experiments technical systems.
 - Machine layouts and space allocation for straight sections
 - Iteration of layout & subsequent implementation study
- Continuation of technical design work:
 - Nb₃Sn wire and 16 T short model programs
 - SRF cavity production and efficient RF power sources
 - Cryogenics and key technologies
 - Identification of potential topics for FP9 funding and preparation of project proposals

Collaboration & Industry Relations

European Advanced Superconductivity Innovation and Training Network > Started 1 October 2017, by now 14 of 15 Early Stage Researchers hired & active.

EASITrain Marie Curie Training Network

- SC wires at low temperatures for magnets (Nb₃Sn, MgB₂, HTS) ۲
- Superconducting thin films for RF and beam screen (Nb₃Sn, Tl) •
- **Electrohydraulic forming for RF structures** •
- **Turbocompressor for Nelium refrigeration**
- Magnet cooling architectures

Horizon 2020 program **Funding for 15 Early Stage Researchers over 3 years &** training

EASITrain

12 Partners

h ee he

- Fast advancement of the FCC study in all areas
- Collider concept designs ready for CDR
- Worldwide R&D programme in place, on Nb₃Sn superconductor, high-field magnets, and on highly-efficient SC RF
- Good progress on all key technologies
- International FCC collaboration growing steadily, focusing now on completing the CDRs as input for European Strategy Update
- Have a productive time and enjoy the FCC Week 2018!

