

Research in High Magnetic Fields

Peter Christianen High Field Magnet Laboratory (HFML) Radboud University, Nijmegen, the Netherlands

High Field Magnet Laboratory: Mission

- 1. Magnet Technology generate the highest possible static magnetic fields Magnetic fields up to 38 T; 45 T hybrid magnet under construction
- 2. User Facility installation & instrumentation open for external users National and European "large research infrastructure"
- **3. Excellent science in high magnetic fields** In-house research programme + user programme

Radboud University

FELI

Outline

- The global landscape of research in high magnetic fields
- Science enabled by high magnetic fields examples from HFML
- Developments in instrumentation & magnet technology

c fields oles from HFML ology

The Global High Magnetic Field Landscape

Έ**(Μ(**Ε

Europe Nijmegen (DC) European Magnetic Field Laboratory Grenoble (DC) **Toulouse** (pulsed) **Dresden** (pulsed)

USA Tallahassee (DC) Los Alamos (pulsed)

Japan Tsukuba (DC) Sendai (DC) Tokyo (pulsed)

China

Hefei (DC)

Wuhan (pulsed)

European Magnetic Field Laboratory (EMFL)

EMFL Founded 2015

Landmark status 2016

the Dutch tradition in Magnetism & Magnetic Fields

Pieter Zeeman 1902 Nobel prize

Zeeman energy Ms

the Dutch tradition in Magnetism & Magnetic Fields

Pieter Zeeman 1902 Nobel prize

Zeeman energy Ms hve Magnetic Field (B_o)

SPIN

Concept of electron spin

Uhlenbeck

Goudsmit

de Haas-van Alphen effect

de Haas

van Alphen

Discovery of new states of matter ! Electrons in 2D + B Quantum Hall effect (QHE)

[GHMFL, Grenoble, 1980]

Klaus von Klitzing 1985 Nobel prize

В

Discovery of new states of matter ! Electrons in 2D + B Quantum Hall effect (QHE)

[GHMFL, Grenoble, 1980]

Klaus von Klitzing 1985 Nobel prize

Fractional quantum Hall effect

[NBML, MIT, 1982]

Horst Störmer **Bob Laughlin** Dan Tsui **1998 Nobel prize**

Room-temperature QHE in graphene [HFML, NHMFL, 2006]

В

Andre Geim Kostya Novoselov 2010 Nobel prize

Graphene: inspiration for new materials

Linear Dispersion: Electrons behave photon-like Degrees of freedom: Charge, Spin and Valley

New physics through bandstructure

Graphene: inspiration for new materials

Linear Dispersion: Electrons behave photon-like Degrees of freedom: Charge, Spin and Valley

New physics through bandstructure

Nature Phys. 14, 178 (2018)

New 2D Semiconductors

WSe₂, WS₂, MoSe₂, MoS₂

New 2D Semiconductors

WSe₂, WS₂, MoSe₂, MoS₂

Direct bandgap

semiconductors with distinct valley structure

Nature Comm. 7, 12715 (2016)

New 2D Semiconductors

WSe₂, WS₂, MoSe₂, MoS₂

Direct bandgap

semiconductors with distinct valley structure

Nature Comm. 7, 12715 (2016)

Gated MoS₂ structures: superconductors that resist high fields due to **strong spin-orbit coupling**

¹² Science **350**, 1353 (2015)

Van der Waals Heterostructures

Graphene-hBN-Graphene

Chiral quantum states of Dirac electrons

Science 353, 6299 (2016)

Van der Waals Heterostructures

Graphene-hBN-Graphene

Chiral quantum states of Dirac Electrons

Science **353**, 6299 (2016)

Magnetism: observation of Bethe strings

SrCo₂V₂O₈

Nature 554, 219 (2018)

Everything is magnetic ! Magnetic Levitation

Everything is magnetic ! Magnetic Levitation

No Field

Magnetic Manipulation of Soft Matter

Nature Comm. 5, 5010 (2014) Nature Comm. 7, 12606 (2016)

Combination with Free Electron Laser Radiation

- 3 FELs (3 1500 μ m) connected to 33 T magnet
- 90 m long beam line with 42 mirrors
- Combination in operation open for external users
- Worldwide unique

Unique combination for exploring new science

high temperature superconductors

ordinary superconductors

lattice vibrations

antiferromagnetic resonance

ferromagnetic spinwaves

Frequency (THz)

10

Unique combination for exploring new science

spin and cyclotron resonance

high temperature superconductors

ordina superconductors

> e vibrations, polarons

erromagn resonance

Frequency (THz)

10

Resistive magnets

- **Electrical Power: 22 MW** \bullet
- Water cooled: 160 l/s lacksquare
- Mechanical stress limited \bullet

45 T Hybrid Magnet – under construction

45 T Hybrid Magnet – under construction

<section-header>

Nb₃Sn conductors, manufactured by ICAS (Italy)

45 T Hybrid Magnet – under construction

<section-header>

Nb₃Sn conductors, manufactured by ICAS (Italy)

SC outsert

45 T Hybrid Magnet – system

1000 W Stirling cooler for radiation shields

20 kA current leads

20 kA SC bus bars

11 10

The hybrid magnet

20kA/10 V POC

Liquid helium plant

DAQ, control & HMI

Liquid nitrogen supply

A High Magnetic Field ...

... defines a *frontier of scientific exploration* - a place where discovery happens

... is a <u>vehicle for emergence</u>, taking matter to the extremes of uncharted phase space

... provides advanced innovative technologies

 $V_{q}(V)$

