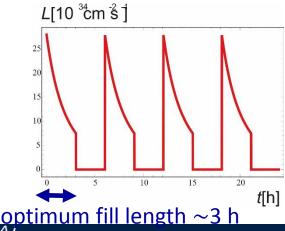
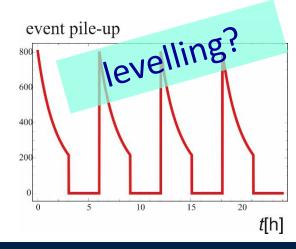


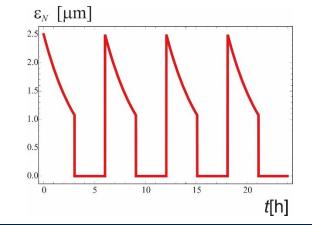
Summary HE-LHC Machine Design

Leon van Riesen-Haupt, JAI Oxford On behalf of the HE-LHC Team

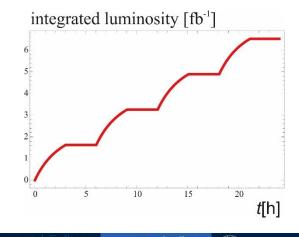
- 3 sessions covering many areas
- Tuesday
 - Options and beam-beam
 - Flat optics, Nuclear Beams, Dynamic Aperture, Beam-Beam
- Thursday
 - Optics session
 - Overview, EIR, Injection, Dump and Integration
 - Collimation and beam dynamics
 - Collimation, Radiation, Dynamic Aperture, Impedence, Stability and Electron Cloud




Eurocircol Parameters, Constraints, Options – F. Zimmerman


physics goals:

- 2x LHC collision energy with FCC-hh magnet technology
- c.m. energy = **27 TeV** ~ 14 TeV x 16 T/8.33T
- target luminosity ≥ 10 ab⁻¹ over 20 years


24 hours at the HE-LHC:

Summary HE-LHC Machine Design, FCC Week 2018

Eurocircol Parameters, Constraints, Options – F. Zimmerman

parameter	FCC-hh		HE-LHC	HL-LHC	LHC	
collision energy cms [TeV]	100		27	14	14	
dipole field [T]	16		16	8.33	8.33	
circumference [km]	97.75		26.7	26.7	26.7	
beam current [A]	0.5		1.1	1.1	0.58	
bunch intensity [10 ¹¹]	1	1	2.2	2.2	1.15	
bunch spacing [ns]	25	25	25	25	25	
synchr. rad. power / ring [kW]	2400		101	7.3	3.6	
SR power / length [W/m/ap.]	28.4		4.6	0.33	0.17	
long. emit. damping time [h]	0.54		1.8	12.9	12.9	
beta* [m]	1.1	0.3	0.25	0.15 (min.)	0.55 (0.25)	
normalized emittance [µm]	2.2		2.5	2.5	3.75	
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	5 (lev.)	1	
events/bunch crossing	170	1000	800	132	27	
stored energy/beam [GJ]	8.4		1.3	0.7	0.36	
Summary HE-LHC Machine Design, FCC Week 2018	4			Imperial College London	Royal Holloway University of London	

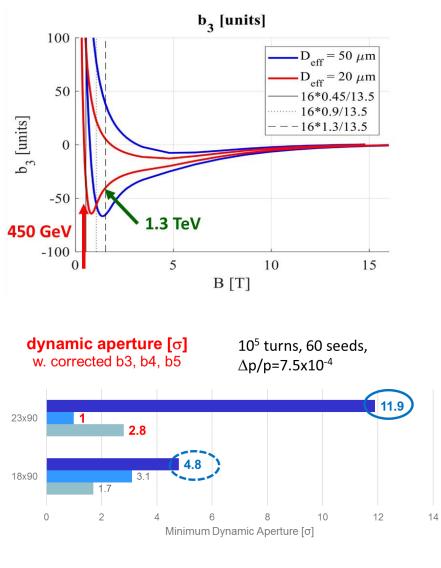
Procircol Parameters, Constraints, Options – F. Zimmerman

1. inject from present SPS at 450 GeV

concerns:

- physical aperture (~1/2-2/3 of LHC), machine protection,...
- energy swing (field quality at low energy)

- instabilities

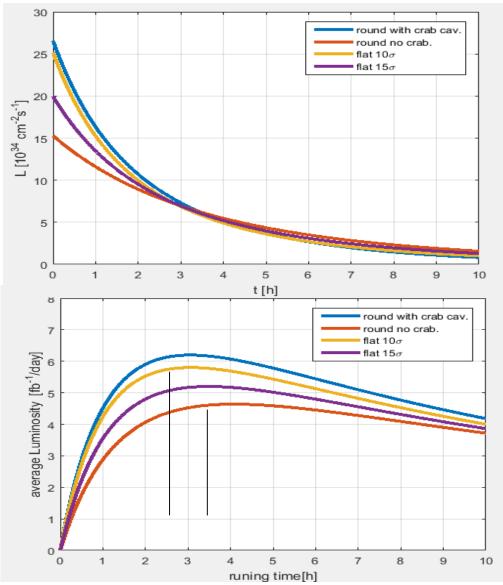

alternatives:

2. new fast ramping SC SPS with single-layer SC dipole (scSPS), max. field 4 T \rightarrow extract at 900 GeV

3. scSPS with double-layer SC dipole, max. field 6 T \rightarrow extract at 1.3 TeV

downsides: large energy swing in scSPS,

also new transfer-line magnets from scSPS to HE-LHC


■ 1300 GeV ■ 900 GeV ■ 450 GeV

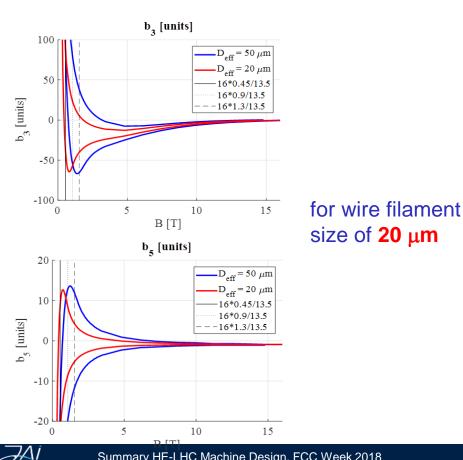
E	Eurocircol Parameters, Constraints, Options – F. Zimmerman								
M.	highest energy	reach = lowest low	vest injection energy (more orter cells, "LHC-like")						
	HE-LHC arc optics	18x90*	23x90**						
	arc cell length [m]	137.23	106.9						
	dipole length [m]	13.95 (x4/h-c)	13.83 (x3/h-c)						
	β _{max} [m]	230	177						
	<i>D</i> _{max} [m]	3.6	2.2						
	mom. comp. α _c [10 ⁻⁴]	5.8	3.5						
	dipole filling factor	0.81	0.78						
	dipole field for 13.5 TeV [T]	15.83	16.59						
	c.o.m. energy for 16 T [TeV]	27.28	26.01						

JAI

Flat Beams – J. L. Abelleira

- Flat beams are an alternative to the use of crab cavities ($\beta_x=0.4$ m, $\beta_y=0.1$ m)
- We have come out with a set of flat IP parameters: β_x=0.4m, β_y=0.1m. We have designed the triplet to be compatible with this.
- The performance of the flat-beam optics depends heavily on the beam-beam separation, that must be increased from beambeam studies experience

Challenges:


- Physical aperture at 450 GeV
- **Dynamic aperture** at 450 GeV
- **Layout** fitting existing tunnel
- IR collision optics at 13.5 TeV Things to look into:
- Continue optimizing **dispersion suppressor** \rightarrow ALGEA
- Beam stay-clear for collimation, is 10σ ok? Even lower?
- Is the **beam screen** optimal for HE-LHC?
- If all fails, how much should we **increase magnet apertures**? Impact on Energy reach? Cost?
- **Combined function dipoles** to increase focusing and improve beam-stay clear at injection?
- **Longer dipoles**, e.g. $14 \rightarrow 20m$, for increased filling factor?
- **Shorter L*** to alleviate the collision optics challenge?

DA Injection – Y. Nosochkov

HE-LHC dipole field quality at 450, 900, 1300 GeV, version 24-JAN-2018

• Large non-linear field errors in **16 T dipole** at injection energy \rightarrow concern for DA • b3s = -35 / -55 / -40 ; b3u/r = 10 / 4 / 3 ; b5s = 8 / 8 / 4 at 450 / 900 / 1300 GeV

A key to New Physics

EuroCirCol

		450 GeV			900 GeV			1300 GeV		
Normal	Systematic	Uncertainty	Random	Systematic	Uncertainty	Random	Systematic	Uncertainty	Randon	
2	-2.230	0.922	0.922	-2.230	0.922	0.922	-2.230	0.922	0.922	
3	-35.000	10.000	10.000	-55.000	4.000	4.000	-40.000	3.000	3.000	
4	0.000	0.449	0.449	0.000	0.449	0.449	0.000	0.449	0.449	
5	8.000	1.500	1.500	8.000	1.500	1.500	4.000	0.800	0.800	
6	0.000	0.176	0.176	0.000	0.176	0.176	0.000	0.176	0.176	
7	0.200	0.211	0.211	0.600	0.211	0.211	1.100	0.211	0.211	
8	0.000	0.071	0.071	0.000	0.071	0.071	0.000	0.071	0.071	
9	3.800	0.500	0.500	4.200	0.500	0.500	2.900	0.200	0.200	
10	0.000	0.027	0.027	0.000	0.027	0.027	0.000	0.027	0.027	
11	0.750	0.028	0.028	0.860	0.028	0.028	1.000	0.028	0.028	
12	0.000	0.009	0.009	0.000	0.009	0.009	0.000	0.009	0.009	
13	0.000	0.011	0.011	0.000	0.011	0.011	0.000	0.011	0.011	
14	0.000	0.003	0.003	0.000	0.003	0.003	0.000	0.003	0.003	
15	0.000	0.004	0.004	0.000	0.004	0.004	0.000	0.004	0.004	
Skew										
2	0.000	1.040	1.040	0.000	1.040	1.040	0.000	1.040	1.040	
3	0.000	0.678	0.678	0.000	0.678	0.678	0.000	0.678	0.678	
4	0.000	0.450	0.450	0.000	0.450	0.450	0.000	0.450	0.450	
5	0.000	0.317	0.317	0.000	0.317	0.317	0.000	0.317	0.317	
6	0.000	0.205	0.205	0.000	0.205	0.205	0.000	0.205	0.205	
7	0.000	0.116	0.116	0.000	0.116	0.116	0.000	0.116	0.116	
8	0.000	0.071	0.071	0.000	0.071	0.071	0.000	0.071	0.071	
9	0.000	0.041	0.041	0.000	0.041	0.041	0.000	0.041	0.041	
10	0.000	0.025	0.025	0.000	0.025	0.025	0.000	0.025	0.025	
11	0.000	0.016	0.016	0.000	0.016	0.016	0.000	0.016	0.016	
12	0.000	0.000	0.009	0.000	0.000	0.009	0.000	0.000	0.009	
13	0.000	0.000	0.005	0.000	0.000	0.005	0.000	0.000	0.005	
14	0.000	0.000	0.003	0.000	0.000	0.003	0.000	0.000	0.003	
15	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.002	

S.I. Bermudez, et al

London

9 UNIVERSITY OF

Royal Holloway

DA Injection – Y. Nosochkov

Dynamic aperture at injection for lattice options

30

25

20

10

5

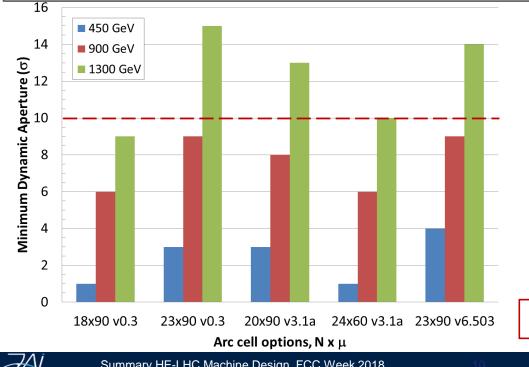
-30

° ∕ ∕ 15

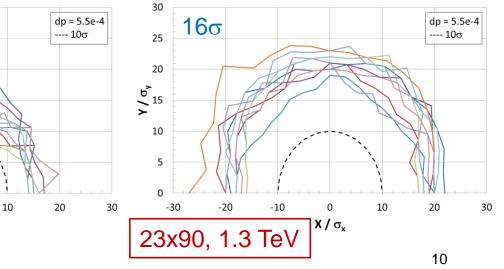
10σ

-20

18x90, 1.3 TeV


-10

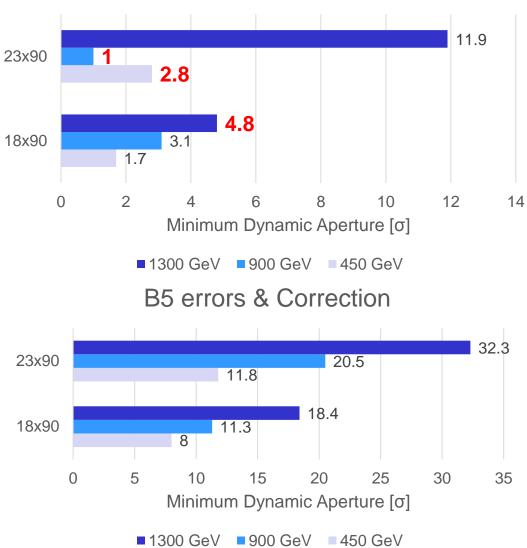
0


Χ/σ,

- HE-LHC lattice options: 24x60, 20x90, 18x90 v0.3, 23x90 v0.3 compared to LHC lattice 23x90 v6.503
- Main concern for injection dynamic aperture is **dipole** field quality with large b3 and b5 errors
- Short-term DA tracking study (10³ turns) for 450, 900, 1300 GeV injection energy options
- b3 and b5 corrections studied

- Insufficient DA at 450 and 900 energies (<10 σ)
- Best DA in 23x90 option at 1.3 TeV, but strong dipole limits the CM energy reach to 26 TeV at 16 T
- 18x90 option has the weakest dipole (27.25 GeV at 16 T), but the DA may not be enough, especially in long-term tracking \rightarrow better field quality is needed
- 20x90 lattice provides an intermediate performance between the 23x90 and 18x90 options

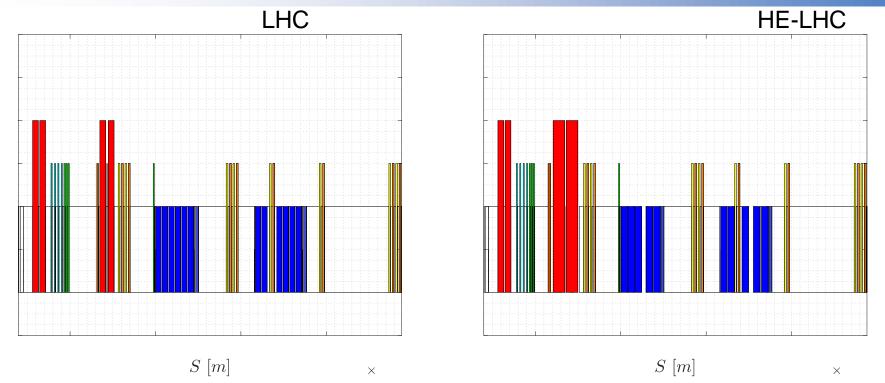
London


Correction Circuits and DA – M. Hofer

 The current status of the dynamic aperture in both lattices and for 3 different injections energies was presented using the latest field quality estimates

roCirCo

- With the current corrections, DA only in the case of the LHC-like lattice at the highest considered injection energy meets the target DA
- Sextupole component of the dipoles has the biggest impact on DA and requires better corrections
- To improve the DA, b₃ correction strategy will be refined and alternative ways such as sorting will be explored

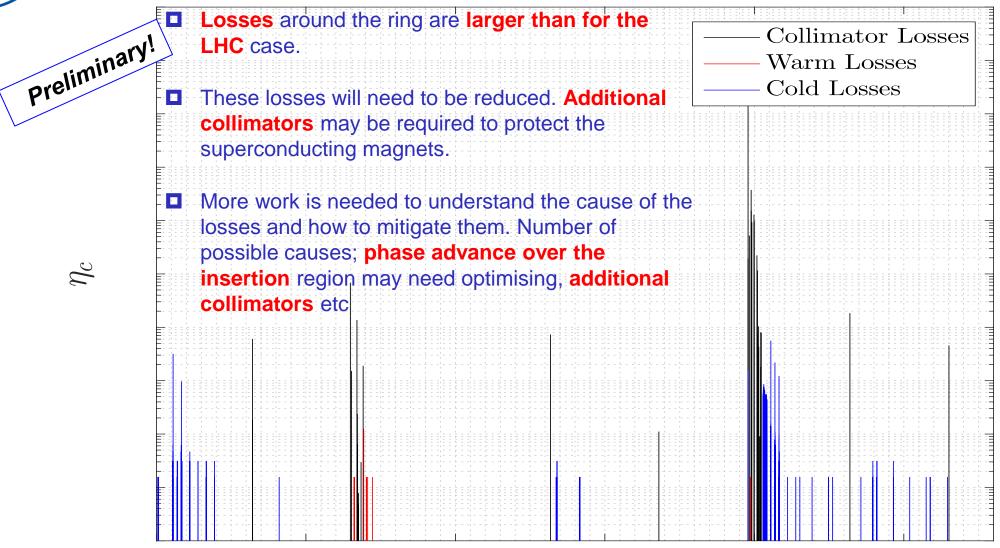


London

Injection and Extraction – B. Goddard

- HE-LHC injection strongly dependent on injection energy
 - At 1300 GeV there is impact on experiments' optics: β^{*} has been matched down to 10 m
- Kicker and septum performance to push SC septa to consider (depends on losses/quenches)
- Transfer lines to HE-LHC at 1300 GeV needs 6 T SC dipoles
 - Almost 50% as many dipoles again as scSPS, and 80% of quadrupoles
 - Integration, cryogenics, machine protection, collimation are all difficult
- Dump extraction is feasible
 - More space for extraction kickers, and advances in technology assumed
 - Need to work out solution for (protection) absorber limits/rise time
 - Trade-off between failure probability and consequences
 - Septa require SC technology and/or cryostat passage
- Dump dilution system most challenging
 - Failure scenarios also to consider in design

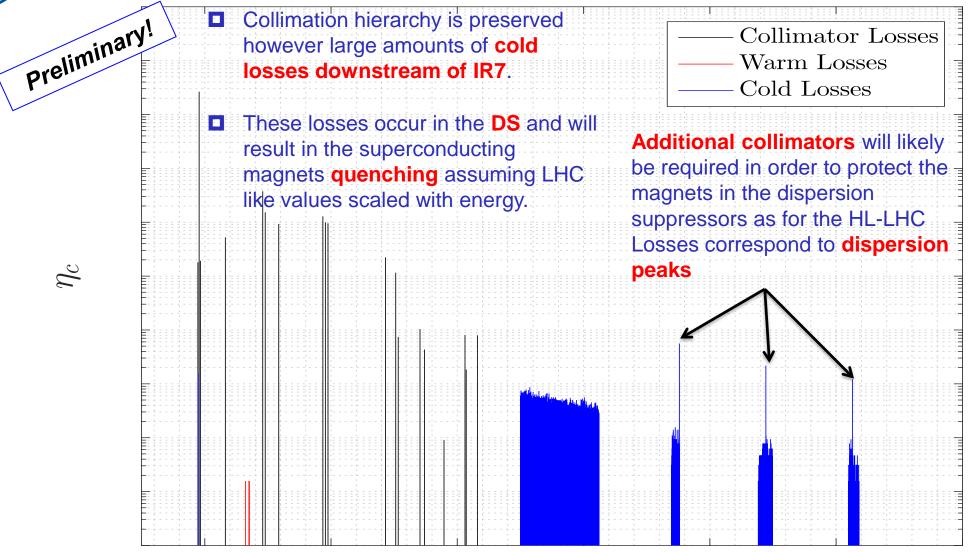
Collimation – M. Crouch


□ IR7 optics modified to include some additional magnet constraints.

- **Challenging** magnet parameters proposed with 2T field strength for the **normal conducting dipoles**
- 1T field strength for the **warm quadrupoles** and a reduced aperture of 20mm
- Outer dogleg dipoles made superconducting and remain the same length, inner dogleg dipoles 6.8m and the passive absorber is shifted to protect the face. One quadrupole is removed in order to make the remaining quadrupoles 3.8m.

 \mathcal{A} I

Collimation – M. Crouch


s|m

 \mathcal{A} I

 \times

Collimation – M. Crouch

s m

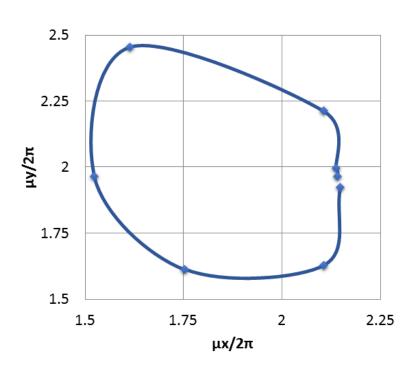
 $\neg \Delta I$

RF Insertion – L. van Riesen-Haupt

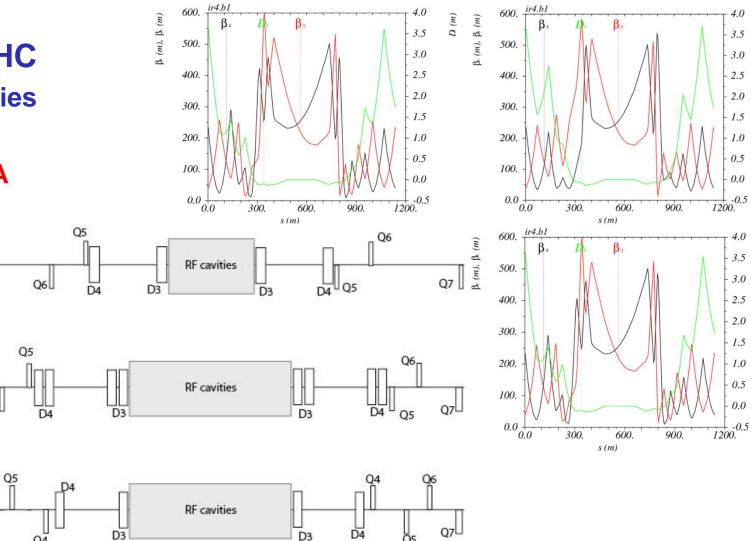
- **IR 4 re-optimised for HE-LHC** ullet
 - **Increased space for RF cavities** —

Q7

Q7


Q7

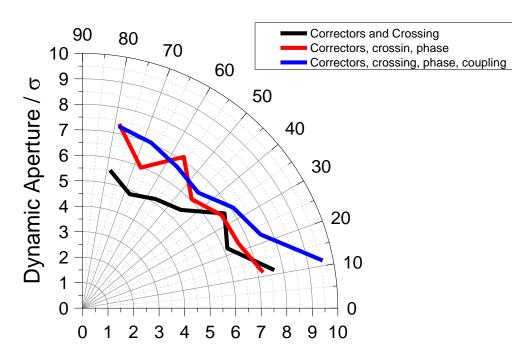
06

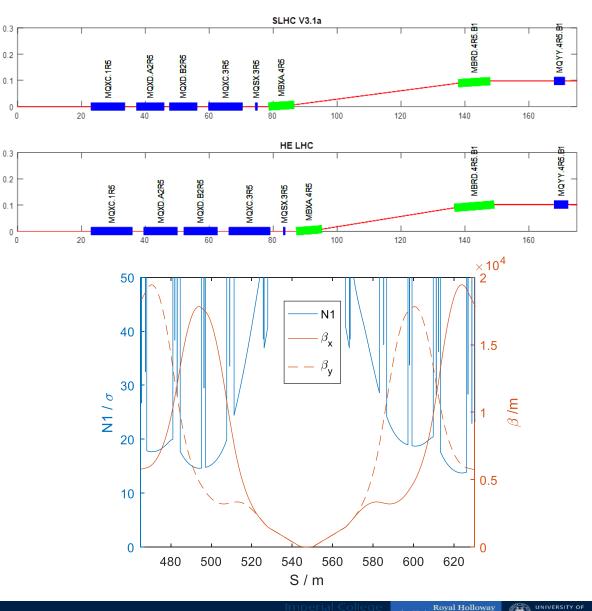

04

06

- Extra quadrupole for tuning ____
- Adjust phase advance for DA

 $\neg \Delta I$

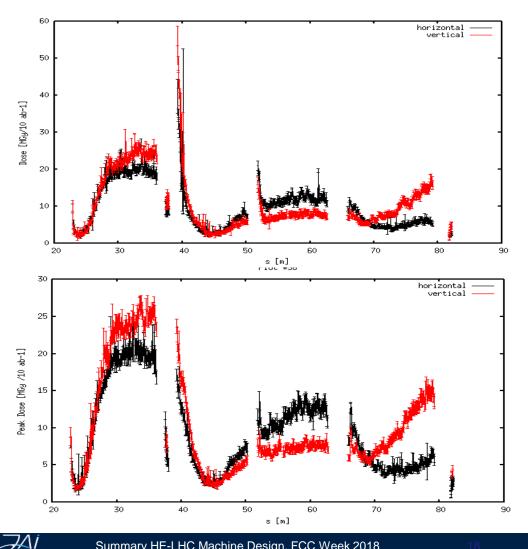

D (m)


D(m)

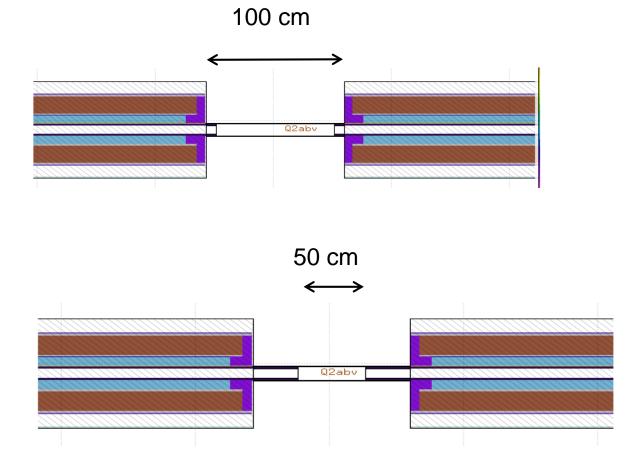
EurocirColExperimental Interaction Regions – L. van Riesen-Haupt

- Triplet optimised 2 cm shielding
- Separation and crab cavities considered
- Matching dependant on DS
 - Work with integration
- DA studies with triplet errors at collision
 - **6**. 4σ reached

 $2\Delta i$



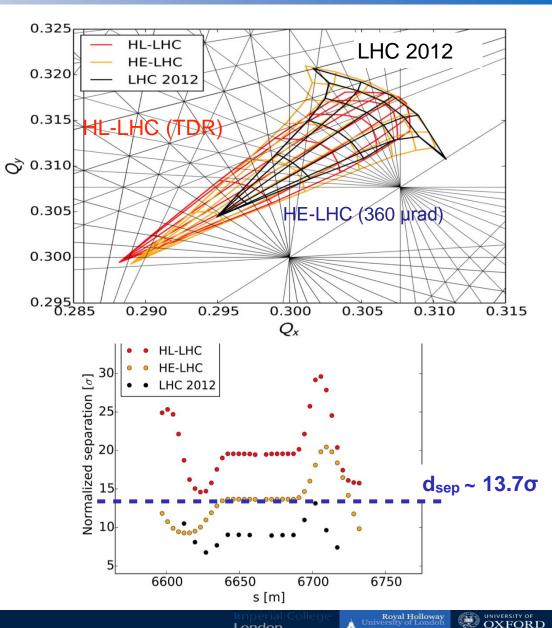
London


EIR Radiation – J. L. Abelleira

Maximum dose profile. peaks at the beginning of each magnet are caused by missing gaps in the ۲ interconnects.

EurCirCol

key to New Physics


Royal Holloway

- Scenario with H-V crossing and beam-beam separation of 13,5 σ (angle 360 µrad) is proposed rescaling from LHC, HL-LHC and FCC studies
 - **Detailed DA** studies needed to address non-linearities impact (high Q' operations and magnets errors)
 - Lattice optimization in presence of beam-beam could improve • further performances (reduced crossing angles)
- Relaxed scenario with β^* from 25 cm to 40 cm (some loss in performances ٠ 15%)
- Separation can be reduced using **compensation schemes** \rightarrow needed detailed study!
 - **Global compensation** with octupole magnets \rightarrow seems robust from simulations for FCC and HL-LHC but needs optimized optics over the cycle to be kept in the presence of errors and optics changes.
 - Local compensation by using e-lenses (bunch to bunch differences ٠ for alternative crossing schemes)
- Two beam stability studies on-going •

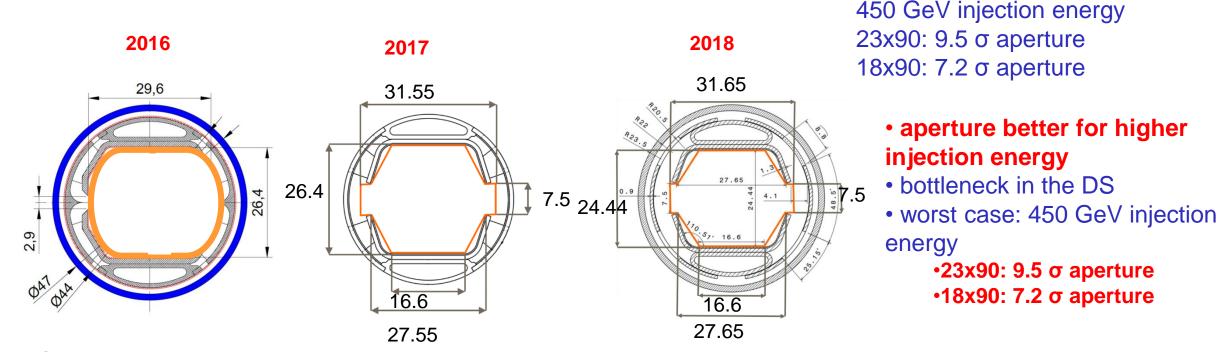
EurCirCo

- Alternative or rotatable x-angles are possible to dilute doses in IRs as ٠ for FCC-hh if needed.
- Flat optics: work on-going to evaluate the effective gain vs round optics by ٠ **DA** simulations

London

ALGEA (Automatic Lattice GEneration Application);

- Based on a few input parameters flexible generation of Sequence, Powering, Naming convention, DS
- Several constraints are taken into account
- Automatic **survey fitting** by varying several parameters (drift spaces, LCELL, LMB)
- V0.3 collision challenging, V0.4 in progress



V0.3	18x90	23x90
Arc cell phase advance [°]	90	90
Arc cell length [m]	137.227	106.9
K ₁ [m ⁻²]	0.00746	0.00773
Quadrupole strength at 13.5 TeV [T/m]	336	348
β _{max, min} [m]	230 / 40	177 / 32
D _{max, min} [m]	3.6 / 1.76	2.2 / 1.1
Momentum Compaction α_{C} [10 ⁻⁴]	5.8	3.5
Quadrupole length	2.8	3.5
Dipole length [m]	13.95	13.83
Filling factor	0.81	0.78
Dipole filed for 13.5 TeV [m]	15.83	16.59
c.o.m. energy for 16 T [TeV]	27.28	26.01

AI

Optics Integration – J. Keintzel

BS 2017 most promising

- •18x90: collision energy: longer quadrupole length has no impact on other cell parameters (spare space)
- •23x90: collision energy: if quadrupole length increases, dipole length has to be decreased to fit in cell
- \rightarrow effect on c.o.m. Energy
- \rightarrow loss of 0.1 TeV c.o.m.

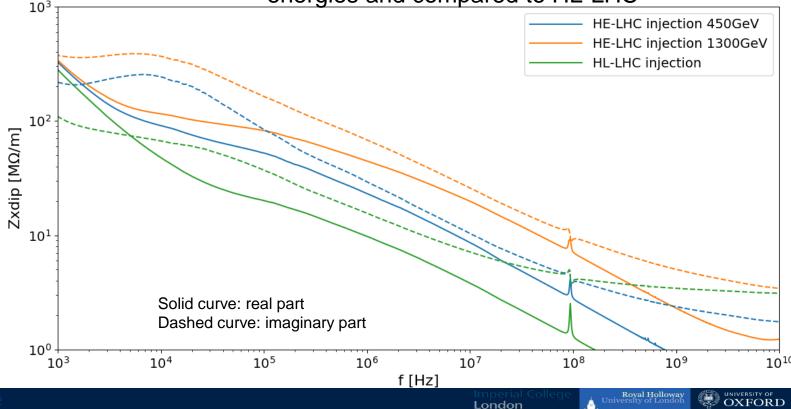
ZΔİ

 \rightarrow b2 – errors need to be decreased to \approx <u>30 units</u>

London

design

HE-LHC Impedance Model – D. Amorim


Impedance model

HE-LHC impedance model based on the HL-LHC model

All contributors included, except for the crab cavities The 2017 FCC-hh beam screen was used

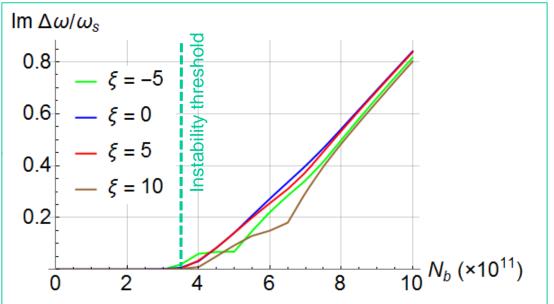
Collimators and beam screen are the main contributors to the impedance **HL-LHC** optics and collimators scaled to HE-LHC parameters were used, to be updated with HE-LHC

Impedance as a function of frequency, for two injection energies and compared to HL-LHC

Single beam stability

roCirCo

At injection, the single beam instability threshold is at ${\sim}3.5\cdot10^{11}ppb$


Octupoles can efficiently stabilize the beam for these energies

But **impact on dynamic aperture** could be important

Top energy is more challenging from the stability point of view

At top energy, the octupoles are much less efficient to stabilize the beam

Assuming the LHC type octupoles and number, they would need $\sim 2000 A$ (current limit: 550 A) Other solutions should be investigated such as electron lens or RF Quadrupole Mode rise time vs bunch intensity for different chromaticities, 450 GeV injection energy, 2748 bunches

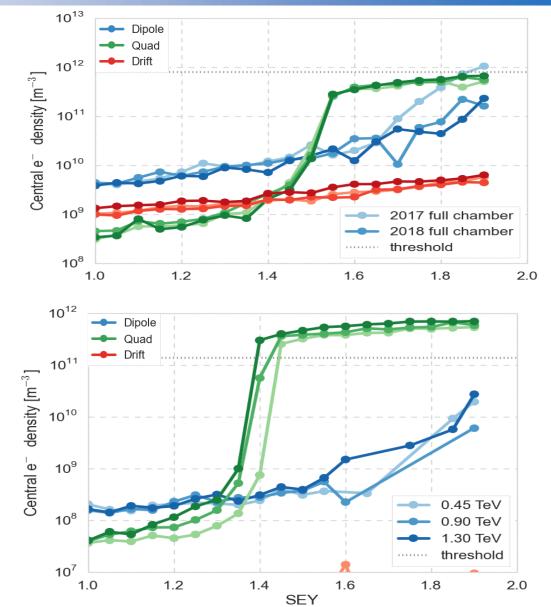
London

HE-LHC Electron Cloud – L. Mether

E-cloud build-up with the full FCC-hh beam screen geometry has been studied for 2017 and 2018 models

No significant difference between the two proposed models

EuroCirCo


• The slit effectively mitigates build-up in field free regions, at least for moderate photoelectron production at the saw-tooth surface

The effect of the injection energy on build up has been studied

 No significant difference between injection energies was observed

The SEY threshold for e-cloud build-up has been determined for different bunch spacing


- The 5 ns bunch spacing is an option only with a coating with SEY = 1.0 or less
- The 12.5 ns requires SEY ~ 1.0 1.1 in dipoles and quadrupoles
- The 25 ns bunch spacing has relatively high thresholds at nominal parameters, but build-up in the quadrupole is enhanced by intensity burn-off, requiring SEY ~ 1.1

London

Nuclear Beams – J. Jowett

Secondary beams from IP in Pb-Pb operation of HE-LHC

Consequences of **small beam pipe** and weaker focussing:

Impact point of **bound-free pair production (BFPP)** beam is not near the **missing magnet** slot in the DS and the solutions adopted for LHC will not work.

May help with **EMD1** beam.

Can the matching be changed?

Secondary beam has few 100 W power.

Can the first 3 dipole magnets be moved closer to the IP to make a space for collimators? Scheme used for earlier proposal for **DS collimators** in LHC – would not need >22 T dipoles ... talk by JMJ at 2009 LHC Collimation Review <u>https://indico.cern.ch/event/55195/</u>

Another solution is to only collide nuclei with low enough Z. Acceptable for the physics programme ?

7Δİ

EurCirCol

Conclusions for nuclear collisions at HE-LHC

- A first look at Pb-Pb collisions in HE-LHC suggests that **integrated luminosity** can be somewhat **more than at HL-LHC** (assuming similar injected beams)
 - Fills short, cycling and turn-around times are critical
- BFPP and EMD losses from IP may be unmanageable because of small beam pipe and weak focussing
 - Alternative layouts for the dispersion suppressors to install collimators ?
 - Limit colliding species to lighter nuclei, eg, Xe?
- Heavy-ion operation of HE-LHC requires serious study:
 - BFPP and EMD losses from IPs, mitigations, solutions
 - Collimation and cleaning inefficiency
 - Best choice of colliding species for physics and machine ?
 - Injection, operational cycle
 - Hybrid proton-nucleus collisions, p-Pb, etc.

- Lots of topics covered in three sessions
- Large progress to complete integrated lattice
 - Dedicated IR designs
 - Integration
 - DA studies
- Many effects studied
 - Impedance
 - Electron cloud
 - Beam-beam
- Flat and nuclear beams explored
- Lots of progress but many things still open

