

Recent SRF R&D results at Fermilab

Martina Martinello FCC week 2018 10 Apr 2018

Outline

- Recent SRF R&D results at Fermilab:
 - High-Q at high gradients
 - Frequency dependence of the surface resistance
 - Nb₃Sn
- Technologies comparison for FCC-ee
- Conclusions

Outline

- Recent SRF R&D results at Fermilab:
 - High-Q at high gradients
 - Frequency dependence of the surface resistance
 - Nb₃Sn
- Technologies comparison for FCC-ee
- Conclusions

Established technology for high-Q and high gradient

High-Q and high-gradient treatments for SRF cavities

High-Q and high-gradient treatments for SRF cavities

N-infusion: high-Q at high-gradients

Composition and mean free path in first nanometers of cavity surface have been shown to be crucial for both Q and gradient performance

7 Martina Martinello I FCC week 2018, Amsterdam

N-infusion processing sequence

Performances can be optimized to reach high-Q at different gradients by varying the main parameters (T, time)

UHV

Different nitrogen depth profiles within λ change performance dramatically

N-infusion processing sequence

ILC LINAC cost reduction with N-infusion

ILC LINAC cost reduction with N-infusion

28 Mattia Checchin | US-Japan Collaboration Workshop

Outline

- Recent SRF R&D results at Fermilab:
 - High-Q at high gradients
 - Frequency dependence of the surface resistance
 - Nb₃Sn
- Technologies comparison for FCC-ee
- Conclusions

R_{BCS}(Eacc) at 1.3 GHz

From 1.3 GHz data we know that:

- R_{BCS}(E_{acc}) increases in regular niobium cavities (EP, BCP, 120C baking)
- R_{BCS}(E_{acc}) decreases in N-doped niobium cavities

A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013)

R_{BCS}(Eacc) at 1.3 GHz

From 1.3 GHz data we know that:

• R_{BCS}(E_{acc}) increases in regular niobium cavities (EP, BCP, 120C baking)

A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013)

🛟 Fermilab

R_{BCS}(E_{acc}) decreases in N-doped niobium cavities

How do these field dependences change with the frequency?

Analyzed Cavities

	650 MHz	1.3 GHz	2.6 GHz	3.9 GHz
EP		\checkmark	\checkmark	
ВСР		\checkmark		\checkmark
120 C baking	\checkmark	\checkmark	\checkmark	\checkmark
2/6 N-doping	\checkmark	\checkmark	\checkmark	\checkmark

Anti Q-slope in BCP'd 3.9 GHz Cavities

Anti Q-slope in BCP'd 3.9 GHz Cavities

Anti Q-slope in EP'ed 2.6 GHz Cavities

3. Normalized $R_T(2 K)$ for N-doping

*Some measurements were admin limited between 15-20 MV/m to avoid quench so, in order to compare the different curves, only data till ~17 MV/m are shown

Unprecedented Medium Field Q₀ at 3.9 GHz

20 Martina Martinello I FCC week 2018, Amsterdam

Summary on the frequency dependence of R_{BCS}(Eacc)

- The physical mechanism underneath the $R_{\rm T}$ reversal has a stronger effect at high frequencies
- The R_T reversal, that has been considered the signature of the Ndoped treatment, is actually visible also in clean Nb but at high frequency
- On the other hand, N-doped cavities at low frequencies do not show the R_T reversal observed at 1.3 GHz

Summary on the frequency dependence of R_{BCS}(Eacc)

- The physical mechanism underneath the R_{T} reversal has a stronger
- Non-equilibrium distribution of quasi-particles may qualitatively explain this behavior.
 If interested in more details, see: M. Martinello, TTC Milan 2018
- On the other hand, N-doped cavities at low frequencies do not show the R_T reversal observed at 1.3 GHz

🚰 Fermilab

Outline

- Recent SRF R&D results at Fermilab:
 - High-Q at high gradients
 - Frequency dependence of the surface resistance
 - Nb₃Sn
- Technologies comparison for FCC-ee
- Conclusions

Nb₃Sn Coatings for High Q₀

- With a critical temperature of 18 K, Nb₃Sn at 4.4 K can have similar Q₀ to Nb at 2.0 K
- Cryogenic plant at 4.4 K vs 2.0 K: efficiency is 3-4 times better, capital costs are smaller, higher reliability...
- In last ~5 years, substantial improvements to Nb₃Sn cavity performance under Cornell program
- New Fermilab program now achieving good performance on 1-cell 1.3 GHz cavities—larger cavities to be coated soon

Nb₃Sn Coatings for High Q₀

- Very soon pushing into lower frequency regime relevant for FCC – 650 MHz cavity recently welded
- Coating chamber was designed to hold 650 MHz 5-cell cavities – multicells also in development
- R&D program continued development to push E_{acc} and Q₀
- Collaboration underway with CERN to coat 800 MHz 1-cell

Outline

- Recent SRF R&D results at Fermilab:
 - High-Q at high gradients
 - Frequency dependence of the surface resistance
 - Nb₃Sn
- Technologies comparison for FCC-ee
- Conclusions

4.4 K Comparison: N-doping vs Nb₃Sn @ 1.3 GHz

SRF cavities for FCC-ee:

	OPTION 1	OPTION 2	
Frequency in MHz	400	400	
Technology	Nb/Cu	Bulk Nb	
E _{acc} in MV/m	10		
Temperature in K	4.5	2.0	
# of cells/cavity	1 – 4		
# of cavities FCC W	428 – 108		
# of CM for FCC W	108 – 28		

FCC-ee W

FCC-ee Higgs & top

	OPTION 1	OPTION 2	
Frequency in MHz	400	800	
Technology	Nb/Cu	Bulk Nb	
E _{acc} in MV/m	10	20	
Temperature in K	4.5	2.0	
# of cells/cavity	3-5		
# of cavities FCC H	534 - 322		
# of cavities FCC t	846 – 508		
# of CM for FCC H	134 – 82		
# of CM for FCC t	212 - 127		

S. Aull, FCC 2017

Technology comparison for FCC-ee:

- N-doping: high-Q at medium field
- Nb₃Sn: higher Tc

Potential of these technologies to frequencies useful for FCC

4.5 K Comparison: N-doping vs Nb₃Sn @ 1.3 GHz

WARNING:

Projected values calculated with very crude f² scaling law

- Field dependence variation with frequencies is not taken into account
- In both cases (Ndoping and Nb3Sn values at high fields are overestimated)

WARNING:

Projected values calculated with very crude f² scaling law

- Field dependence variation with frequencies is not taken into account
- In both cases (Ndoping and Nb3Sn values at high fields are overestimated)

NB. The projected values do not exceed the Q-factors given by residual resistance

‡ Fermilab

WARNING:

Projected values calculated with very crude f² scaling law

- Field dependence variation with frequencies is not taken into account
- In both cases (Ndoping and Nb3Sn) values at high fields are overestimated

NB. The projected values do not exceed the Q-factors given by residual resistance

WARNING:

Projected values calculated with very crude f² scaling law

- Field dependence variation with frequencies is not taken into account
- In both cases (Ndoping and Nb3Sn) values at high fields are overestimated

NB. The projected values do not exceed the Q-factors given by residual resistance

Summary on SRF technology for FCC

Technology comparison for FCC-ee (400/800 MHz SRF Nb cavities):

- <u>N-doping</u>: high-Q at medium field
 - Best technology for 2 K operation
 - Suitable for operation at 10 and 20 MV/m
 - Mature technology already applied to cryomodules production and fully transferred to industry
- <u>Nb₃Sn</u>: higher Tc
 - Best technology for 4.5 K operation at 10 MV/m
 - ➤ Need to improve quench field to be suitable for operation at 20 MV/m (potential for operation at very high gradient → 80 MV/m)
 - Not yet implemented to cryomodules production

Conclusions

- N-infusion suitable for high-Q at high-gradient, studies focused on improving reliability → possible technology for ILC cost reduction
- Frequency dependence studies suggest that:
 - high-frequencies cavities may be suitable for high-Q applications at medium- and high-gradients
 - low-frequencies cavities are more likely to be affected by "Q-slope issues" due to R_{BCS} increasing with field
- Nb₃Sn shows promising results for 4.5 K operation (may be considered for FCC-ee) and potential for high-gradients
- N-doping is a mature technology and the current choice for 2 K operation at medium-gradients (may be considered for FCC-ee)

Team Effort

- Results shown here are due to many hardworking people
- Thanks to SRF measurement and research department for contributions with graphs, slides, etc.

Thank you for your attention!

