

ECR From samples to cavities

A.-M. Valente-Feliciano

Office of Science

AKNOWLEDGEMENT

irfu

Jefferson Lab D.R. Beverstock, M. Burton, G. Eremeev, F. Marhauser, A. Palczewski, L. Phillips, O. Trofimova, J. Spradlin, C. Reece

M. Arzeo, S. Aull, G. Rosaz

- V. Khouzenikov
- F. Stevie & Group
- J. S
 - J. Skusa
 - R. Valizadeh, T. Junginger
 - A. Gurevich
 - A. Sutter
 - R. Laxdal
 - Prof. A. Lukaszew & Group, Prof. M. Kelley

Energetic Condensation via ECR

energetic condensation Sequential phases for film growth

- Interface
- Film nucleation
- Growth of appropriate template for subsequent deposition
- Deposition of final surface optimized for minimum defect density.

Potential for EC Nb films – ideal case

Potential for EC Nb films – real case

ECR Nb/CuO nucleated at 184 eV – fiber growth

Nb on Cu oxide (200 °C) Amorphous interface

Nucleation @ 184 eV Subsequent growth @ 64 eV Baking 200 °C Coating 200 °C

BF TEM image

ECR: From samples to cavities- Amsterdam, April 10th 2018

ECR Nb/CuO nucleated at 184 eV– fiber growth

ECR: From samples to cavities- Amsterdam, April 10th 2018

ECR fiber growth Nb/CuO @ 400 MHz

ECR fiber growth Nb/CuO @ 800 MHz

M. Arzeo, 14:10 - 14:30, P4 Berlage zaal, 1.9 Quadrupole resonators characterization

https://indico.cern.ch/event/656491/contributions/2932254/

Other considerations

- Resistances still high in QPR RF measurement, bulk & films confounded
- Sample issues?
- Is the weld on top of the sample affecting substrate material, thus growth, thus limiting performance?

Towards ECR cavity coating

3 GHz half cells diffusion bonded & fully coated in-situ

<u>3 GHz Cavity with beam tubes</u>: 5GHz frequency cut-off Adjust coating geometry to allow RF fields to penetrate the cell and get adequate plasma conditions

RF and plasma simulations ongoing with Comsol Multiphysics, PIC-MC soon

Towards ECR cavity coating

Truncated 3 GHz with Beam tube extensions Awaiting RF test

Coating in 2 steps , with dry N_2/O_2 exposure in between

Development of Nb Thin Film Cavity Deposition

M. Burton, L. Phillips, et. al.

Upgraded Deposition System

- Tripled Pulse Power Capability
- Permanent Vertical System Operation
- Very low surface roughness
- Hetero-epitaxial Growth
- First cavity coating tests encouraging!

Vertical coating system

HIPIMS discharge

ECR: From samples to cavities- Amsterdam, April 10th 2018

Mitigation of Q-slope confirmed for both epitaxial and fiber growth ECR films

- Fiber growth films thus far seem better performing than hetero-epitaxial films (parallel with DC magnetron sputtering studies?)
- Need more RF measurements statistics
- ECR show promising SRF results with unprecedented thin film material properties, considerably improved compared to the state-of-the-art.
- Energetic condensation techniques are a reasonable stepping stone to truly "engineered SRF Nb surface"
- Development of 3 GHz coating in sample system still on going
- Concept and design in place for an ECR cavity coating system (requires funding)

Perspectives for SRF Nb Thin Film Cavity

The perspective of cavity performances based on ECR sample RF behavior yields similar cryogenic losses for Nb/Cu at 400 MHz and 4.5 K and bulk Nb at 800 MHz and 2.0 K.

Basic material processes exist

 proof-of-principle demonstrations for modest field applications

Principal challenges at present

- Establish adequate process controls
- Address technical challenges with scale-up
- □ Tool-up for big cavities & refine process parameters in parallel on smaller scales.
- Done right, reasonable stepping stone to truly "engineered surface", with all the benefits of high Q, high field, low cost, high reliability systems.

DANK JE

THANK YOU

ECR Nb/Cu large grain–Surface resistance via QPR

Hetero-epitaxial film Nb on large grain OFHC Cu, 360 °C bake & coating 184 eV for nucleation/early growth + 64 eV for subsequent growth

S. Aull, CERN

A-M Valente-Feliciano - FCC Week 2017, Berlin - 05/30/2017

ECR Nb/Cu large grain–Surface resistance via QPR

A-M Valente-Feliciano - FCC Week 2017, Berlin - 05/30/2017