## Recent Results on a Multi-Cell 802 MHz bulk Nb Cavity



9-13 April 2018 Beurs van Berlage Amsterdam

Frank Marhauser















Office of Science



#### Outline

- JLab's role in SRF cavity development for CERN's FCC and LHeC
- Cavity design principle
- Relevant key performance parameters
- Cavity fabrication stages
- Vertical test results in dewar
- Summary



## JLab's Role in SRF Cavity Studies for CERN

- CERN and JLab had signed a general Memorandum of Understanding to cooperate in the development of SRF accelerator technologies specifically related to CERN's FCC studies
- FCC includes a hadron-electron collider program envisioning a 60 GeV 3-pass race-track ERL
- ERL is similar to that conceived for the LHeC linac-ring collider proposal (CDR 2012) utilizing the LHC protons or ions for collision
  - LHeC provides strong, complementary physics case to LHC/HE-LHC physics program and would run concurrently
  - -Would bridge gap until FCC would be on horizon



arXiv:1206.2913, 2012



### JLab's Role in SRF Cavity Studies for CERN

- In any case, substantial R&D for the ERL including SRF cavity technology is required
  - Triggered CERN to prepare studies for a multi-pass ERL test facility with up to 1 GeV electron beam energy

- However, this was not endorsed at CERN

- But: To showcase the ERL concept, this eventually led to the proposal for *PERLE* (Powerful ERL Linac Experiments) facility to be hosted by INP+LAL in Orsay/France
  - PERLE (~500 MeV) serves as a key demonstration machine for LHeC and FCC-he (CDR submitted May 2017)



arXiv:1705.08783, 2017



## JLab's Role in SRF Cavity Studies for CERN

- Note: CERN requires SRF technology at 801.58 MHz for several other programs
  - -20th integer ref. to 25 ns bunch spacing, e.g. FCC-ee (ttbar) needs 802 MHz 5-cell cavities
  - Frequency is good choice concerning cost optimization rationales
- To initiate SRF cavity R&D, CERN and JLab had agreed on a Joint Work Statement to:
  1) Develop a conceptual design of a five-cell 802 MHz ERL-type cavity
  2) Fabricate and test the cavity vertically at 2 K to validate the RF design
- Concerning task 1); one cannot optimize all cavity key parameters simultaneously
   → always a trade-off
  - $\rightarrow$  geometry should relate to needs of the specific machine
  - ightarrow aim was to obtain a geometry that well balances all key parameters



#### Cavity Design Rationale - When is a Cavity Shape Optimized ?





#### Cavity Design Rationale - When is a Cavity Shape Optimized ?



## **Cavity Design Studies**

#### JLab version



- Final design selected with:
   iris ID = 130 mm = beam tube ID
  - Same design principle applied
  - This ID yields better mechanical stability
  - Considers HOM-damping need (strong cell-to-cell coupling factor of 3.2%)



## **Cavity Design Studies**





- Final design selected with: iris ID = 130 mm = beam tube ID
  - Same design principle applied
  - This ID yields better mechanical stability
  - Considers HOM damping need (strong cell-to-cell coupling factor of 3.2%)



scaled from 704 MHz design (E. Jensen et al. LINAC 2014)



**CERN** version 2 (R. Calaga, CERN-ACC-NOTE-2015)

 $\beta\lambda/2 = 18.7$  cm

80

100

120

60

x [cm]

Tube ID = 160 mmIris ID = 160 mmver 2 🗕

Jefferson Lab

FCC Week 2018, 9-13 April 2018, Beurs van Berlage, Amsterdam, Netherlands

20

10 r [cm]

0

-10

-20 0 16 cm

20

35.

40

## Parameter Table for ERL Cavity Candidates

| Parameter                                                   | Unit      | Value  | Value                    | Value                                   |  |
|-------------------------------------------------------------|-----------|--------|--------------------------|-----------------------------------------|--|
| Cavity type                                                 |           | JLab   | CERN Ver. 1 <sup>*</sup> | CERN Ver. 2 <sup>*</sup>                |  |
| Frequency                                                   | MHz       | 801.58 |                          |                                         |  |
| Number of cells                                             |           | 5      |                          |                                         |  |
| Lactive                                                     | mm        | 917.9  | 935                      | 935                                     |  |
| Long. loss factor<br>(2 mm rms bunch length)                | V/pC      | 2.742  | 2.894                    | 2.626                                   |  |
| $R/Q = V_{\rm eff}^2/(\omega^*W)$                           | Ω         | 523.9  | 430                      | 393                                     |  |
| G                                                           | Ω         | 274.6  | 276                      | 283                                     |  |
| <i>R/Q·G/</i> cell                                          |           | 28788  | 23736 <mark>-18</mark>   | <mark>%</mark> 22244 <mark>-23 %</mark> |  |
| Eq. Diameter                                                | mm        | 328.0  | 350.2                    | 350.2                                   |  |
| Iris Diameter                                               | mm        | 130    | 150                      | 160                                     |  |
| Tube Diameter                                               | mm        | 130    | 150                      | 160                                     |  |
| Eq./Iris ratio                                              |           | 2.52   | 2.19                     | 2.19                                    |  |
| Wall angle (mid-cell)                                       | degree    | 0      | 14.0                     | 12.5                                    |  |
| <i>E</i> <sub>pk</sub> / <i>E</i> <sub>acc</sub> (mid-cell) |           | 2.26   | 2.26                     | 2.40 +6 %                               |  |
| B <sub>pk</sub> /E <sub>acc</sub> (mid-cell)                | mT/(MV/m) | 4.20   | 4.77 <mark>+1</mark> 4   | <mark>% 4.92 +17 %</mark>               |  |
| k <sub>cc</sub>                                             | %         | 3.21   | 4.47                     | 5.75                                    |  |
| cutoff TE <sub>11</sub>                                     | GHz       | 1.35   | 1.17                     | 1.10                                    |  |
| cutoff TM <sub>01</sub>                                     | GHz       | 1.77   | 1.53                     | 1.43                                    |  |

\* R. Calaga, CERN-ACC-NOTE-2015, 5/28/15 Jefferson Lab 10

#### Cavity Fabrication Tools



802 MHz half-cell deep-drawing and beam tube rolling dies





Half-cell during pre-trimming by wire electro-discharge machining and final milling for iris weld joint preparation



Jefferson Lab 11

#### **Cavity Fabrication Tools**













Cavity design has been adapted as baseline for PERLE

Prototype well exceeds conceived  $E_{acc}$  requirement with  $Q_0$ -values > 3e10 at 2K

Jefferson Lab 16





## Summary

- JLab completed the design, fabrication and vertical test of a 5-cell ERL prototype cavity suitable for LHeC PERLE, FCC-he, and FCC-ee (ttbar)
  - Validation of RF design successful
  - Record  $Q_0$ -values achieved, ~30 MV/m quench field
- The fabrication efforts covered:
  - 1) Bulk Nb 5-cell cavity
  - 2) Bulk Nb 1-cell cavity
  - 3) Two OFHC Cu 1-cell cavities for thin film coating R&D at CERN
  - 4) OFHC Cu cavity for R&D bench measurements at CERN allowing to add cells
- JLab looks forward to collaborate with CERN and also with PERLE member institutions beyond the completion of this project
  - Towards a production cavity incl. HOM couplers, input couplers, helium tank etc.







# Many Thanks...

## ...particularly to the CERN colleagues for the fruitful collaboration and to all PERLE members!



### Questions ?







#### Supplemental Slides







Office of Science

### Ensemble of Cavities Fabricated

#### All 802 MHz prototype cavities built









CRN1\_2 - For bench measurements allowing to join multiple cells



#### Copper cavities required brazing of tubes to SS flanges



Nb/Cu Technology - 400 MHz LHC Nb/Cu

SRF R&D Overview Monday R&D summary talk by A.-M. Valente-Feliciano

#### G. Rosaz et al.

Progress: Spare cavities coated Best RF performance achieved





## CERN requires SRF Technology for Several Program

#### • Cavities at 801.58 MHz needed

| Program              | Frequency (MHz)  |  |  |
|----------------------|------------------|--|--|
| LHC, spare and more  | 401              |  |  |
| LHC upgrade          | 200, <b>802</b>  |  |  |
| HIE-ISOLDE           | 101              |  |  |
| HL-LHC crab cavities | 401              |  |  |
| SPL (ESS)            | 704              |  |  |
| LHeC, FCC-he, PERLE  | 802              |  |  |
| FCC-ee, FCC-hh       | 401 & <b>802</b> |  |  |

CERN

From Erk Jenson, LHeC workshop, 2015

#### International (SRF)

| Program             | Frequency (MHz) |  |  |
|---------------------|-----------------|--|--|
| JLab CEBAF & LERF   | 1497            |  |  |
| ILC, X-FEL, LCLS-2, | 1300            |  |  |
| JLab EIC            | 952.6           |  |  |
| SNS                 | 805             |  |  |
| JLab HC             | 750             |  |  |
| ESS                 | 704             |  |  |
| PIP-II              | 650             |  |  |
| JAERI               | 500             |  |  |
| eRHIC               | 394             |  |  |
| CERN Linac4, ESS    | 352             |  |  |



#### Beam Spectra vs. HOM Frequencies

• Cavity design took into account avoiding main 802 MHz beam spectral lines



frequency (GHz)

**Case 2**: PERLE baseline bunch spectrum for 801.58 cavities: Bunch spacing 801.58MHz/20 = 40.079 MHz



### Latest Vertical Test Results at 2K

- A single-cell Nb cavity (CRN1) was built and tested
- MP activities observed at ~10 MV/m, but quickly processed, re-rinse & re-test planned



#### Main post-processing steps

| Post-Processing steps            | Unit     | CRN1    | CRN5    |
|----------------------------------|----------|---------|---------|
| Bulk BCP                         | μm       | 160     | 216     |
| High-Temperature heat treatment  | °C, hrs. | 800, 3  | 800, 3  |
| Final EP                         | μm       | 30      | 30      |
| High Pressure Rinse (HPR) cycles |          | 2       | 4       |
| Low temperature bake-out         | °C, hrs. | 120, 12 | 120, 12 |

#### Summary of main results

| RF results                  | Unit       | CRN1  | CRN5  |
|-----------------------------|------------|-------|-------|
| E <sub>acc</sub> at quench  | MV/m       | 32.3  | 30.1  |
| E <sub>pk</sub> at quench   | MV/m       | 61.3  | 68.1  |
| B <sub>pk</sub> at quench   | mT         | 129.0 | 126.3 |
| FE onset field              | MV/m       | ~20   | ~25   |
| FE-induced radiation (max.) | mR/hr.     | 2.3   | 0.06  |
| Residual resistance         | nΩ         | 3.19  | n.m.  |
| Max. Q <sub>0</sub> -value  | /1e10      | 4.97  | 4.72  |
| $Q_0$ -value at 25 MV/m     | /1e10      | 2.62  | 3.12  |
| Lorentz Force Detuning      | (MV/m)²/Hz | -7.1  | -1.5  |

Jefferson Lab 25

e, Amsterdam, Netherlands

#### **Residual Resistance**

- Material used is OTIC Ningxia high-RRR (250) fine grain Nb
- Residual resistance has been assessed during tests for CRN1



#### $R_{res} = 3.19 \pm 0.79 n\Omega$

Note: This takes into account 2.49 n $\Omega$  due to NC RF losses in SS blank flanges for the single-cell cavity



## HOM Damping Studies

- Preliminary HOM studies carried out incorporating LHC-type HOM couplers (and coaxial input coupler) scaled to adapt to new cavity shape at 802 MHz
  - Broadband damping efficiency was found to be not optimal since also narrowband loop couplers are employed as required for LHC cavities
- We considered using new coaxial HOM-couplers or scaled versions of existing designs (TESLA/JLab-type couplers) with up to 3 couplers combined in a single 'Y' end-group
  - Benefit of 'Y' end-group: Minimizes/eliminates dependency on transverse mode polarization



## HOM Damping Studies

- Alternative: Broadband waveguide HOM couplers such as developed at JLab in the past for Ampere-class ERLs
  - Waveguide couplers could be 'overkill' for PERLE since 3-pass peak beam current is comparably small (< 100 mA)</li>
  - Benefit: Waveguides do not require fundamental mode notch filter and are broadband by nature
  - Yet, trapped  $TE_{111}$  and  $TM_{110}$  dipole modes with high impedances might be better captured with coaxial couplers (cf. *Supercond. Sci. Technol. 30 (2017) 063002*)

