

## **RF characterization of superconducting films on copper via quadrupole resonator**

M. Arzeo, S. Aull, K. Ilyna, G. J. Rosaz, A-M Valente-Feliciano and W. Venturini Delsolaro



On behalf of FCC RF & WP 3







## **Niobium** on Copper technology for the accelerating cavities compares to the bulk one



Courtesy of S. Aull, FCC week 2017

S. Aull, and co. FCC-DRAFT-TECH-2017-002 (2017)



## Nb/Cu technology has several advantages



#### Cheaper



## Nb/Cu technology has several advantages





Cheaper

#### **More stable**



## Nb/Cu technology has several advantages







#### Cheaper

#### More stable

Less sensitive to flux trapping?



#### **Different coating techniques are explored**

#### **Electron Cyclotron Resonance**





#### Jefferson Lab

Courtesy of A-M Valente-Feliciano (talk earlier today)

High Power Impulse Magnetron Sputtering



Courtesy of G. J. Rosaz (talk earlier today)



# RF performances characterized via a quadrupole resonator



T. Junginger and co., Rev. Sci. Intr. 83, 063902 (2012)



#### **Calorimetric technique**

$$R_{s} = \frac{2\mu_{0}^{2}(P_{DC1} - P_{DC2})}{\int_{sample} |\overrightarrow{B}|^{2} dS}$$





## **QPR pros&cons**

- Multi-frequency operation: ideal for basic studies
- Small samples are easily coated and can be analyzed after the RF characterization
- Samples are more cost effective than cavities

- Limited max RF field depending on the frequency mode
- Limitations on the minimum Rs measurable
- Mechanical vibration of the rods due to helium boiling



## ECR Nb/Cu

recent results and trapped flux analysis



## Linear field dependence indicates trapped flux





## Higher frequency results in a shallower slope



Frequency dependence might be a hint for the understanding of the physical mechanism behind it: collective pinning (D. B. Liarte at Cornell) or something else?



# Thermal cycling affects trapped flux: the faster, the shallower





# Thermal cycling affects trapped flux: the faster, the shallower





M. Arzeo - FCC week 2018 – Amsterdam, 10th April 2018

### Trapped flux as reduced gap?





M. Arzeo - FCC week 2018 – Amsterdam, 10<sup>th</sup> April 2018

## Trapped flux as reduced gap?









## Nb<sub>3</sub>Sn/Cu, beyond Nb/Cu

The first RF characterization of a Nb<sub>3</sub>Sn/Cu film



#### Nb<sub>3</sub>Sn: the most promising technology beyond Nb



#### Very challenging: it required a strong R&D effort



## The first RF characterization of Nb<sub>3</sub>Sn/Cu



#### **Coating parameters:**

*Cu/Nb* (~400 - 500 nm)/*Nb*<sub>3</sub>*Sn* (~1.5 – 1.7 μm)

 $\begin{array}{l} \mathsf{P}_{\text{coating}} = 7 \times 10^{-3} \text{ mbar (Kr)} \\ \mathsf{T}_{\text{coating}} = 680^{\circ} \mathsf{C} \ (\text{real lower}) \\ \mathsf{T}_{\text{annealing}} = \ 72 \ \text{hours} \ @ \ 670^{\circ} \mathsf{C} \ (\text{real lower}) \end{array}$ 

#### **Before coating**

#### After coating

#### Desired coating conditions could not be reached



## Broad transition due to non homogeneity or off-stoichiometry?





## The first RF characterization of Nb<sub>3</sub>Sn/Cu



#### it still requires a strong R&D effort



## **Conclusions and Outlook**

## First QPR Nb<sub>3</sub>Sn/Cu sample



RF performances still far from goal

Proper heating system for optimal coating conditions

#### There is still work to do...



## **Conclusions and Outlook**

## First QPR Nb<sub>3</sub>Sn/Cu sample



RF performances still far from goal

Proper heating system for optimal coating conditions

#### ...there are reasons to be optimistic





| f (MHz)               | $\Delta/k_{\rm B}T_{\rm c}$ | R <sub>res</sub> (nOhm) | <i>l</i> (nm) | ξ <sub>0</sub> (nm) | λ <sub>L</sub> (nm) |
|-----------------------|-----------------------------|-------------------------|---------------|---------------------|---------------------|
| 1 <sup>st</sup> : 400 | 2.02                        | 40                      | 83.5          | 59.4                | 24.6                |
| 2 <sup>nd</sup> : 400 | 1.81                        | 55                      | 83.5          | 59.4                | 24.6                |
| 1 <sup>st</sup> : 800 | 2.03                        | 54                      | 84            | 60                  | 16                  |
| 2 <sup>nd</sup> : 800 | 1.92                        | 70.5                    | 84            | 60                  | 16                  |

#### NOTEs:

1<sup>st</sup> refers to the initial cool down (entire QPR)
2<sup>nd</sup> refers to the thermal cycle of the sample
Tc is fixed at 9.25 K (estimated from f0 vs T)
In red the parameters that are fixed during the fitting procedure, those in green are varied.





