Innovative crab cavity design for FCC hh

Alexej Grudiev (CERN)

On behalf of the WOWCC development team

10/04/2018

FCC week 2018, Amsterdam

Motivation

CERN

S. Aull, SRF2015

Can we apply the state of the art
Nb coating
technique to 400
MHz crab cavity?

No thermal runaway

Minimize BCS losses

Save on raw material

15/09/2015 sarah.aull@cern.ch

Nb on Cu coating

2D cross-section of a compact crab cavity

Concept of Wide Open Waveguide (WOW) crab cavity

- Tapered shape is easy to coat. Limit of tapering angle: ~70 deg
- Non-tapered or reentrant shapes will require more sophisticated coating scheme.

WOW CC layout concept

- Big aperture beam pipes carry the HOMs outside of the cryostat
- HOM dampers are located at room temperature outside of the cryostat
- Tapers from big aperture to the standard aperture beam pipe attached at the ends

Main Parameter of the WOWCC

w [mm]	251.70
h [mm]	251.70
r [mm]	42.00
L [mm]	1400.00
d [mm]	192.00

Table 1: Main parameters of the WOWCC

Parameter	Unit	Value
dimensions (W \times H \times L)	[mm]	$250 \times 250 \times 1400$
smallest aperture	[mm]	42
frequency	[MHz]	400
geometry factor G	$[\Omega]$	108.9
deflecting voltage V_{x0}	[MV]	3.0
R_x/Q	$[\Omega]$	343.5
E_{pk} at V_{x0}	[MV/m]	45.3
B_{pk} at V_{x0}	[mT]	78.3
Q_0 at V_{x0}		4.0×10^{8}

Power loss distribution on the surface at 3 MV

Wake Field and Impedance Calculation

Monopole

Loss factor [V/pC] 0.012 $(Z_L/N)_{eff}$ [m Ω] 0.974

Dipole

(ick factor x [V/pC/m]	1.673
(ick factor y [V/pC/m]	0.460
$(Z_T)_{eff} \times [\Omega/m]$	1562.8
$\left(Z_{T}\right)_{eff}^{C}$ y $\left[\Omega/m\right]$	437.6

HOMs of the WOWCC

Cavity	f	R/Q	Beam pipe	Cut-off	$Q_{ m ext}^{ m c}$
modea	[MHz]	$[\Omega]^{\mathrm{b}}$	modea	[MHz]	
TE ₁₁₁	400.0	342.7	TE ₁₁	624.9	1.0×10^{6}
TE_{112}	638.3	15.7	TE_{11}	624.9	< 35
TE_{111}	643.8	0.08	TE_{11}	624.9	< 40
TE_{012}	667.0	13.9	TM_{01}	847.6	4.8×10^{4}
TM_{011}	827.2	25.1	TM_{01}	847.6	4.8×10^{3}
TE ₂₁₁	1276	0.30	TE ₂₁	1180	2.3×10^{4}

RF frequency sensitivity to Pressure

- Outer cavity shape is optimized such that the deformation of pressure fluctuation affects the fundamental mode frequency as less as possible
- External shape is parametric in r1 (groove radius)
- Three codes compared: CST, ANSYS, and COMSOL

CST Simulation. Max. deformation: 18.7 um. Pressure Sensitivity: 2.068 Hz/mbar

ANSYS-HFSS Simulation. Max. deformation: 17.7 um. Pressure Sensitivity: 2.732 Hz/mbar

Assembly concept of the WOWCC copper substrate

Fabrication Process Workflow

Fabrication: Central part milling

Fabrication: central part metrology

- Internal shape accuracy is within specs.
- Except for small defects
 - Length is +0.1 mm probably due to thermal effects
 - There is a step of 0.08 mm in the cavity center due milling from two sides, see below

Fabrication: extremity parts

Welding of extremities

Welding of the full cavity is planned this week

Tooling is finished and assembled

Coating of WOWCC

Total
hight:
5.5 m
Total
weight:
820 kg

Mockup setup for coating developments: vacuum chamber and the insert

Development of new sputtering source

- Phase 1 prototyps are under delopement.
 They will be used for R&D in the mockup setup
- Phase 2 prototype will follow to be used in the "scale 1" coating setup for WOWCC

Thank you very much!