FCC-Week

Amsterdam - April io ${ }^{\text {th }}, 2018$
Massimiliano Antonello
on behalf of the RD_FA INFN Collaboration

INFN Sez. Milano
Università degli Studi dell’Insubria
IDEA
Dual-Readout Calorimeter

- The hadronic showers are made of two components:
- Electromagnetic component:
- from neutral meson (π°, η) decays
- Non electromagnetic component:
[average values in lead]
- charge hadrons $\pi^{ \pm}, \mathrm{K}^{ \pm}(20 \%)$
* nuclear fragments, p (25\%)
- n, soft γ 's (15%)

范 break-up of nuclei (invisible energy) (40\%)

- The main fluctuations in the event-to-event calorimeter response are due to:
- Large non-gaussian fluctuations in energy sharing em/non-em
- Large, non-gaussian fluctuations in "invisible" energy losses
- Increase of em component with energy
* The calorimetric performance at collider experiments has always been spoiled by the problem of non-compensation, arising from the dual nature of hadronic showers
* The Dual-Readout calorimetry aims at solving this problem by measuring, event by event, the relative fraction of the em and non-em components

[^0]
Dual-Readout Calorimetry

* The Dual-readout concept: do not spoil em resolution to get $\mathbf{e} / \mathbf{h}=\mathbf{I}$ but measure $\boldsymbol{f}_{\text {em }}$ event by event \rightarrow eliminate effects of fluctuations in f_{em} on calorimeter performance
- Use 2 different sampling processes: Cherenkov light (produced by relativistic particles and dominated by the e.m. shower component) and scintillation light production (for the total deposited energy):

$$
\begin{aligned}
& \boldsymbol{C}=E\left[f_{e m}+\frac{1}{(e / h)_{C}}\left(1-f_{e m}\right)\right] \\
& \boldsymbol{S}=E\left[f_{e m}+\frac{1}{(e / h)_{S}}\left(1-f_{e m}\right)\right] \\
& \text { e.g. if: (e/h) }=\mathbf{1} . \mathbf{3}(\mathbf{S}) \text { vs } \mathbf{4 . 7} \mathbf{(C)} \\
& \mathbf{C}=\frac{f_{e m}+0.21\left(1-f_{e m}\right)}{f_{e m}+0.77\left(1-f_{e m}\right)}
\end{aligned}
$$

[^1]
Dual-Readout Calorimetry

* The Dual-readout concept: do not spoil em resolution to get $\mathbf{e} / \mathbf{h}=\mathbf{I}$ but measure $\boldsymbol{f}_{\text {em }}$ event by event \rightarrow eliminate effects of fluctuations in f_{em} on calorimeter performance
* Use 2 different sampling processes: Cherenkov light (produced by relativistic particles and dominated by the e.m. shower component) and scintillation light production (for the total deposited energy):

$$
\begin{aligned}
& \boldsymbol{C}=E\left[f_{e m}+\frac{1}{(e / h)_{C}}\left(1-f_{e m}\right)\right] \\
& \boldsymbol{S}=E\left[f_{e m}+\frac{1}{(e / h)_{s}}\left(1-f_{e m}\right)\right] \\
& \text { e.g. if: (e/h) }=\mathbf{1} . \mathbf{3}(\mathbf{S}) \text { vs } \mathbf{4 . 7}(\mathbf{C}) \\
& \frac{\boldsymbol{C}}{\boldsymbol{S}}=\frac{f_{e m}+0.21\left(1-f_{e m}\right)}{f_{e m}+0.77\left(1-f_{e m}\right)}
\end{aligned}
$$

$E=\frac{S-\chi C}{1-\chi} \boldsymbol{c}_{\substack{\text { Universally } \\ \text { valid! }}}$
with: $\quad \chi=\frac{1-(h / e)_{S}}{1-(h / e)_{C}}$
χ is independent of both:

- Energy
- Type of hadron

Dual-Readout Fiber-Sampling Calorimeters

- In the past 20 years the DREAM/RD52 built and tested different prototypes that confirmed the feasibility of this calorimetric technique

Some DREAM/RD52 results

Latest energy resolution performance:

EM RESOLUTION:		HAD RESOLUTION:	
Copper module: $\frac{11 \%}{\sqrt{E}}+1 \%$	Simulated: $\frac{10.3 \%}{\sqrt{E}}+0.3 \%$	Lead module:	Simulated: $\frac{34 \%}{\sqrt{E}}$

[^2]
Some DREAM/RD52 results

Latest energy resolution performance:

Particle ID (hadron/electron separation):

RD52 lead calorimeter: (60 GeV) $\mathrm{e}^{-/ \pi-}$

* Lateral shower profile
- Difference C/S signal
Starting time of PMT signals
Signal charge/amplitude ratio
:---:
particle ID capability of:
$\boldsymbol{\varepsilon (e -) = \mathbf { 9 9 . 8 \% }}$
$@ \mathbf{R (}\left(\boldsymbol{\pi}^{-}\right) \sim \mathbf{5 0 0}$

Signal chargelamplitude ratio

4π simulations

Projective layout: "wedge" geometry

It covers the full volume up to $|\cos (\theta)|=0.995$, with 92 different types of towers (wedge)

A typical one in the barrel:

- $\boldsymbol{\Delta \theta} \boldsymbol{\theta} \boldsymbol{\Delta} \phi=\mathbf{1 . 2 7}{ }^{\circ} \mathbf{x 1 . 2 7}{ }^{\circ}$
- length of $250 \mathrm{~cm}(\sim$ IO $\lambda)$
- about 4000 fibres (starting @ different depths to keep constant the sampling fraction)

PRELIMINARY RESULTS (to be validated)

- Each tower calibrated to $20 \mathrm{GeV} \mathbf{e}^{-}$
- Incident angle of ($\mathrm{I}^{\circ}, \mathrm{I} .5^{\circ}$)
- Tower response: $\mathbf{E}_{\text {mean }} / \mathbf{E}_{\text {beam }}$
- L.Y. for C channel $\sim 30 \mathrm{pe} / \mathrm{GeV}$ (as in RD52)

4π simulations

Projective layout: "wedge" geometry

It covers the full volume up to $|\cos (\theta)|=0.995$, with 92 different types of towers (wedge)

A typical one in the barrel:

- $\boldsymbol{\Delta \theta} \boldsymbol{\theta} \boldsymbol{\Delta} \phi=\mathbf{1 . 2 7}{ }^{\circ} \mathbf{x 1 . 2 7}{ }^{\circ}$
- length of $250 \mathrm{~cm}(\sim$ IO $\lambda)$
- about 4000 fibres (starting @ different depths to keep constant the sampling fraction)

PRELIMINARY RESULTS (to be validated)

In the barrel region:

EM RESOLUTION:

e- from $\mathbf{1 0}$ to $\mathbf{1 0 0} \mathbf{~ G e V}$
Average response:
100.0 ± 0.4 (\%)

$$
\frac{\sigma}{E} \sim \frac{14 \%}{\sqrt{E}}+0.1 \%
$$

HAD RESOLUTION:

 π^{-}from $\mathbf{I O}$ to $\mathbf{1 0 0} \mathbf{G e V}$ $\chi=\mathbf{0 . 2 9}$ (from DREAM)Average response:

$$
9^{2} \pm 1(\%)
$$

$$
\frac{\sigma}{E} \sim \frac{26 \%}{\sqrt{E}}+1 \%
$$

PMTvs SiPM readout

How to fit such a geometry in a collider experiment?

Using a SiPM readout

[^3]
(Potential) Disadvantages

- Optical crosstalk between Cherenkov and scintillating signals
- Dynamic range
- Some instrumental effects:

Some instrumental effects:

- Temperature gain variation, dark count rate, etc.

- Signal saturation

the limiting factor to the hadronic calorimeter resolution

Advantages

- Compact readout:
no fibres sticking out (antennas)
- Possible longitudinal segmentation
- Operation in a magnetic field
- Higher photon detection efficiency (PDE):
- Cherenkov photoelectrons are
- A 112 cm long, $15 \times 15 \mathrm{~mm}^{2}$ wide, module was built from stacked brass layers, housing I mm diameter clear \& scintillating fibres* with a pitch of $\mathbf{I} .5 \mathrm{~mm} \sim 112 \mathrm{~cm}$ long, $15 \times 15 \mathrm{~mm}^{2}$

- Delay Wire Chamber: selects events in central region
- Trigger: $\left(\mathrm{T}_{\mathrm{r}} \cdot \mathrm{T}_{2} \cdot \overline{\mathrm{~T}_{\mathrm{H}}}\right)$
- Preshower detector: identifies e^{-}
- Muon counter: identifies μ
- $\mathbf{X o}=29 \mathrm{~mm}, \mathrm{R}_{\mathrm{M}}=3 \mathbf{3 1} \mathrm{~mm}$
- The calorimeter is $\mathbf{3 9} \mathbf{~ X o}$ deep and has an effective radius of $\mathbf{0 . 2 2} \mathbf{R M}$
* According to GEANT4 simulations the em shower containment is $\mathbf{4 5 \%}$ (S) and $\mathbf{3 6 \%}$ (C)

> Different beam energy and type:
> e-beams@ $6,10,20,30,40,50,60,80,100,125 \mathrm{GeV}$ $\boldsymbol{\mu}$ beams @ $50,60,125 \mathrm{GeV}$

2017 test beam SiPM-based readout

SiPM
HAMAMATSU S13615-1025

Sensitive area	$1 \times 1 \mathrm{~mm}^{2}$
Cell pitch	$25 \mu \mathrm{~m}$
No. of pixels	1584
Peak Photon Detection Efficiency	25%
Breakdown voltage $\mathrm{V}_{b r}$	53 V
Recommended operational voltage $\mathrm{V}_{o p}$	$\mathrm{~V}_{b r}+5 \mathrm{~V}$
Gain at $\mathrm{V}_{o p}$	7×10^{5}
Dark Count Rate at $\mathrm{V}_{o p}$	50 kps
Optical Crosstalk at $\mathrm{V}_{o p}$	1%

Two different layers: C upstream, S downstream

MADA: Multichannel Analog to Digital Acquisition system

- 32 channel digitizer
- sampling rate $\mathbf{8 o M S p S} / \mathbf{4} 4-$ bit ADC
- FPGA-based: real-time charge integration

Real-time equalization of the sensor response

Event display examples
so GeV e-beam b) Off-centered
a) Centered

A muon event

Results: optical crosstalk

* Since the two types of fibres are located very close to each other and carry light signals that differ by more than an order of magnitude in intensity, the optical crosstalk between the signals is a major challenge
- Direct measurement:
- Only one uncovered S fibre illuminated (1456 fired cells)
- The sum of all 32 C signals recorded
- The matrix shows the mean number of fired cells read out by each SiPM

Results: light yield

Cherenkov signal

- $\mathrm{V}_{\text {op }}=5.5 \mathrm{~V}_{\text {ov }}(57.5 \mathrm{~V})$
- A mean number of $\boldsymbol{\sim} \mathbf{2 8 . 4}$ fired cells/GeV
- Correcting for the containment (36%) 69 ± 5 fired cells/GeV

[^4]
Results: light yield

Cherenkov signal

- $\mathrm{V}_{\mathrm{op}}=\mathbf{5 . 5} \mathbf{V}_{\text {ov }}(57.5 \mathrm{~V})$
- A mean number of $\boldsymbol{\sim} \mathbf{2 8 . 4}$ fired cells/GeV
- Correcting for the containment (36\%) 69 ± 5 fired cells/GeV

Scintillation signal

- $\mathrm{V}_{\mathrm{op}}=\mathbf{0 . 5} \mathrm{V}_{\text {ov }}(52.5 \mathrm{~V}) \rightarrow \mathbf{P D E} \sim \mathbf{2 \%}$ to avoid saturation effects
- Correcting for non-linearity response (first approximation)
- Correcting for the containment (45%) 3200 ± 200 fired cells/GeV

Results: spatial resolution

- The possibility of separately reading each fibre allows:
- to sample em showers with a millimeter spatial resolution

Simulated energy deposition in scintillating fibres from 50 GeV

Results: lateral shower profiles

- The possibility of separately reading each fibre allows:
* to sample em showers with a millimeter spatial resolution
* to measure the lateral profiles very close to the shower axis

For each selected event:

- find the shower axis (using CoG):

$$
\bar{x}=\frac{\sum_{i} x_{i} E_{i}}{\sum_{i} E_{i}}, \quad \bar{y}=\frac{\sum_{i} y_{i} E_{i}}{\sum_{i} E_{i}}
$$

- find distance of each fibre to the shower axis:

$$
r=\sqrt{\left(x_{i}-\bar{x}\right)^{2}+\left(y_{i}-\bar{y}\right)^{2}}
$$

- bin data (0.6 mm pitch) and find average

Results: lateral shower profiles

- The possibility of separately reading each fibre allows:
* to sample em showers with a millimeter spatial resolution
* to measure the lateral profiles very close to the shower axis

For each selected event:

- find the shower axis (using CoG):

$$
\bar{x}=\frac{\sum_{i} x_{i} E_{i}}{\sum_{i} E_{i}}, \quad \bar{y}=\frac{\sum_{i} y_{i} E_{i}}{\sum_{i} E_{i}}
$$

- find distance of each fibre to the shower axis:

$$
r=\sqrt{\left(x_{i}-\bar{x}\right)^{2}+\left(y_{i}-\bar{y}\right)^{2}}
$$

- bin data (0.6 mm pitch) and find average

About half of the energy is deposited within few $\mathbf{m m}$ from the shower axis and $\sim \mathbf{1 0 \%}$ within Imm

Results: longitudinal segmentation

- The possibility of separately reading each fibre allows:
- to sample em showers with a millimeter spatial resolution
* to measure the lateral profiles very close to the shower axis
* to enable a possible longitudinal segmentation
- Particle ID in multi-particle environment has never been studied
- Possible ways to deal with it:
I. Put fibres starting at different depths:
- Keep the one-compartment design but multiply the number of fibres by 2
- The additional fibres are shorter by $1 \lambda_{1}$

2. Measure time properties of detecting photons:

- ToT, PkT, Ti, Tf?
- A real-time (feature-extracting) processor?

Next steps

Short term (20I8 test beam):

- For the IDEA Vertical Slice:
* Understand the effect of a preshower on the calorimeter performance
- Test an RD52 (lead) module with the dual-length fibre option
- For the SIPM-based module:
- Reduce optical crosstalk \Rightarrow improve fibre insulation
- Prevent the saturation for S light \Rightarrow apply a filter and improve dynamic range
- Increase the cherenkov $L Y \Rightarrow$ use an aluminized glass mirror
- Test channel grouping/adding ($\mathrm{I}, 2,4,6,9$ channels summed up)

Next steps

- For the IDEA Vertical Slice:
- Understand the effect of a preshower on the calorimeter performance
- Test an RD52 (lead) module with the dual-length fibre option
- For the SIPM-based module:
- Reduce optical crosstalk \Rightarrow improve fibre insulation
- Prevent the saturation for S light \Rightarrow apply a filter and improve dynamic range
- Increase the cherenkov $L Y \Rightarrow$ use an aluminized glass mirror
- Test channel grouping/adding ($\mathrm{I}, 2,4,6,9$ channels summed up)

Middle and Long term (3-year R\&D):

- Increase the SiPM module dimensions for a full electromagnetic shower containment
- Find an optimal readout electronics solution (ASIC, FPGA, etc)
- Investigate machining aspects and a scalable solution for a 4π geometry
- Geant4 full simulation: study the impact of different absorber materials on the calorimeter performance, assess particle ID capabilities in multi-particle environment, investigate the main physics channels (i.e. detection of 2 jets and 2 tau's final states from H,W and Z)

More About Simulations

*The em response is simulated using a $30 \times 30 \times 100 \mathrm{~cm}^{3}$ copper matrix, with i mm fibres and 1.5 mm distances.

- The constant term is due to the S channel since this signal depends on the impact point for particles entering parallel to the fibres \rightarrow this term can be avoided with a small tilt of the fibre axis
- In the C channel the problem does not show up since the early component of the shower produce photons outside the numerical fibre aperture
* For the hadronic response is used a $80 \times 80 \times 250 \mathrm{~cm}^{3}$ copper matrix, to obtain a containment of $\sim 99 \%$ - Calibration was done with 40 GeV electrons beams
* In the lead module the limited lateral size of the matrix ($\sim 1 \lambda$) was allowing to collect, in average, only the $\mathbf{9 0 \%}$ of the shower energy, so that leakage fluctuations were dominating the resolution capability
* The resolution was also affected by the finite light attenuation length of fibres, causing early starting showers to be observed at lower signal values

Copper vs Lead

- Their main properties:
- Copper: $\rho=11.3 \mathrm{~g} / \mathrm{cm}^{3}, \mathbf{X}_{\mathbf{0}}=0.56 \mathrm{~cm}, \mathbf{R}_{\mathbf{M}}=1.60 \mathrm{~cm}, \lambda_{\text {int }}=15.1 \mathrm{~cm}$

- This means that for hadronic showers, a full coverage solution with lead will give broader and longer showers and a total mass 42% heavier than copper.
* Being the C light almost exclusively produced by em component and the e/mip ratio 50\% higher for copper than for lead, the C LY should be higher in copper, resulting in a better hadronic resolution.
- But copper extrusion with the required tolerances in planarity and groove parallelism is not yet an established industrial processes.
- Alternative copper alloys (brass, bronze) will be investigated as well.

Dual-Readout Calorimetry

- Hadronic data points (S,C) located around straight lines

The plot shows that the data points are located on a locus, clustered around a line that intersects the C/S $=$ I line at the nominal beam energy

$E=\frac{S-\chi C}{1-\chi}$ Universally
with: $\chi=\frac{1-(h / e)_{S}}{1-(h / e)_{C}}=\cot g(\theta)$
χ is independent of both:

- Energy
- Type of hadron

(EED) Dual-Readout at Work

An example of the improvement that can be expected in the measurement of a sample of $\mathbf{1 0 0} \mathbf{G e V} \boldsymbol{\pi}$'s if $\mathrm{f}_{\text {e.m. }}$ is NOT measured (top plot) or if $\mathrm{f}_{\text {e.m. }}$. bins are singled out

Calibration

- Calibration done at $21.5^{\circ} \mathrm{C}$:
- Same light conditions (few photoelectrons) at different $V_{\text {Bias }}$
- Peak to Peak measured using the Multi Gaussian Fit
- Linear fit used to:
- to extrapolate the Peak to Peak distance at low $V_{\text {Bias }}$ (where the peaks are no longer distinguishable)
* to measure the $\mathbf{V}_{\mathbf{B k}}=\mathbf{5 I . 7 I} \pm \mathbf{0 . 3 9} \mathbf{V}($ error $<\mathbf{I} \%)$

PDE Measurements

- Relative PDE measurement at different $V_{\text {Bias }}$:
- Same amount of light for all measurements (24% of occupancy at nominal $V_{\text {Bias }}$)
- Number of fired cells extrapolated using the calibration
- Relative PDE calculated \longrightarrow absolute PDE reference point: $\mathbf{2 5 \%}$ at $+\mathbf{5}$ Vov @ $25{ }^{\circ} \mathrm{C}$

Non-Linearity Correction

- Correction applied: $\quad N_{\text {fired }}=1584\left(1-e^{\frac{-\# \text { Photons*PDE }}{1584}}\right)$

(FEL) SiPM: Silicon Photomultipliers

Principles

SiPM $=$ High density ($-\mathrm{IO} 4 / \mathrm{mm}^{2}$) matrix of diodes with a common output, reverse biased, working in Geiger-Müller regime

When a photon hits a
 cell, the generated charge carrier triggers an avalanche multiplication in the junction by impact ionization, with gain at the IO^{6} level

Operation

- SiPM may be seen as a collection of binary cells, fired when a photon in absorbed
*"counting" cells provides an information about the intensity of the incoming light:

(FEC) SiPM: Silicon Photomultipliers

Principles

SiPM = High density ($-\mathrm{IO} 4 / \mathrm{mm}^{2}$) matrix of diodes with a common output, reverse biased, working in Geiger-Müller regime

When a photon hits a cell, the generated charge carrier triggers an avalanche multiplication in the junction by impact ionization, with gain at the IO^{6} level

Operation

- SiPM may be seen as a collection of binary cells, fired when a photon in absorbed
*"counting" cells provides an information about the intensity of the incoming light:

SiPM: Silicon Photomultipliers

- It's possible to choose the "best fit" device for each application:

$50 \mu \mathrm{~m}$

75 \& $100 \mu m$ are available as well
Not to mention the variety of available options for the front-end, the packaging and the near future integration with the read-out electronics

in terms of sensor area:

- IXI mm ${ }^{2}$

- $3 \times 3 \mathrm{~mm}^{2}$
- $6 \times 6 \mathrm{~mm}^{2}$

IX4 mm ${ }^{2}$

- I2XI2 mm^{2}
- $24 \times 24 \mathrm{~mm}^{2}$

(FEC) SiPM: Silicon Photomultipliers

- Recently, thanks to the Through Silicon Via (TSV) technology, HAMAMATSU offered arrays built up on mosaic of IXI mm^{2} sensors, quite appealing for the envisaged application:

Parameters	S13615		Unit	
	-1025			
Effective photosensitive area	1.0×1.0		$\mathrm{~mm}^{2}$	
Pixel pitch	25	50	$\mu \mathrm{~m}$	
Number of pixels / channel	1584	396	-	
Geometrical fill factor	47	74	$\%$	

Parameters		Symbol			Unit	
		-1025	-1050			
Spectral response range			λ	320 to 900		nm
Peak sensitivity wavelength		λp	450		nm	
Photon detection efficiency at $\lambda \mathrm{p}^{* 3}$		PDE	25	40	\%	
Breakdown voltage		$V_{B R}$	53 ± 5		V	
Recommended operating voltage ${ }^{* 4}$		$\mathrm{V}_{\text {op }}$	$\mathrm{V}_{\mathrm{BR}}+5$	$V_{B R}+3$	V	
Dark Count	Typ.	-	50		kcps	
	Max.		150			
Crosstalk probability	Typ.	-	1	3	\%	
Terminal capacitance		Ct	40		pF	
Gain ${ }^{* 5}$		M	(7.0x10 ${ }^{5}$	1.7×10^{6}	-	

SiPM：8x8 Matrix

＊The development was based on $\mathbf{8 x 8}$ channel arrays and we have got in September 2016 the first samples ever produced（serial no．I \＆2）with both $\mathbf{2 5 \mu \mathrm { m }}$ and $\mathbf{5 0} \boldsymbol{\mu \mathrm { m }}$ pitch［the latter only was used in the test beam］

〈FRONT SIDE〉

〈BACK SIDE〉

EFFECTIVE PHOTOSENSITIVE AREA ： $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm} /$ channel

Sensor Boards

The sensor system

I. the daughter board providing an independent bias to the 64 sensors and integrating T measurement for gain compensation
2. the mother board

- amplifying \& shaping the output of each sensor
- routing the signals to the digitization system

3. the backplane board allowing to probe via mcx connectors each channel

Cut for E-Selection

- Geometrical cut: events with the maximum signal in the central box (4x4)

* Noise cut: events with the total number of fired cells (sum on all SiPM signals) greater than 20 ph.e.
- Muons cut: events with a signal in the muon counter below threshold
- PSD cut: events with a signal in the PSD above threshold

Cut for E-Selection

- Geometrical cut: events with the maximum signal in the central box (4x4)
- Noise cut: events with the total number of fired cells (sum on all SiPM signals) greater than 20 ph.e.
- Muons cut: events with a signal in the muon counter below threshold
- PSD cut: events with a signal in the PSD above threshold

[^0]: FCC Week - Amsterdam, io April 2018

[^1]: FCC Week - Amsterdam, io April 2018

[^2]: FCC Week - Amsterdam, io April 20 or 8

[^3]: FCC Week - Amsterdam, io April 2018

[^4]: FCC Week - Amsterdam, io April 2018

