FCC-Week

Amsterdam - April 10th, 2018

Massimiliano Antonello

on behalf of the **RD_FA INFN Collaboration**

IDEA

INFN Sez. Milano Università degli Studi dell'Insubria

Dual-Readout Calorimeter

Hadron showers development

- The hadronic showers are made of two components:
 - **Blectromagnetic component:**
 - **from neutral meson** (π° , η) decays
 - Non electromagnetic component:
 - \oplus charge hadrons π^{\pm} , K[±](20%)
 - nuclear fragments, p (25%)
 - \ll n, soft γ 's (15%)

average values in lead]

- \oplus break-up of nuclei (invisible energy) (40%)
- The main **fluctuations** in the event-to-event calorimeter response are due to:
 - A Large non-gaussian fluctuations in energy sharing em/non-em
 - Large, non-gaussian fluctuations in "invisible" energy losses
 - Increase of em component with energy
- The calorimetric performance at collider experiments has always been spoiled by the problem of non-compensation, arising from the dual nature of hadronic showers
- The **Dual-Readout** calorimetry aims at **solving** this problem by measuring, event by event, the relative fraction of the em and non-em components

References: NIM A 537 (2004)

Dual-Readout Calorimetry

- * The **Dual-readout** concept: do not spoil em resolution to get e/h=i but measure f_{em} event by event \rightarrow eliminate effects of fluctuations in f_{em} on calorimeter performance
- We see a different sampling processes: Cherenkov light (produced by relativistic particles and dominated by the e.m. shower component) and **scintillation light production** (for the total deposited energy):

FCC Week - Amsterdam, 10 April 2018

$$f_{em} + \frac{1}{(e/h)_{C}} (1 - f_{em})$$

$$f_{em} + \frac{1}{(e/h)_{S}} (1 - f_{em})$$

e.g. if: (e/h) = **1.3(S)** vs **4.7(C)**

$$f_{em} + 0.21(1 - f_{em})$$

 $f_{em} + 0.77(1 - f_{em})$

Dual-Readout Calorimetry

- effects of fluctuations in f_{em} on calorimeter performance
- shower component) and **scintillation light production** (for the total deposited energy):

FCC Week - Amsterdam, 10 April 2018

* The **Dual-readout** concept: do not spoil em resolution to get e/h=i but measure f_{em} event by event \rightarrow eliminate

We see a different sampling processes: Cherenkov light (produced by relativistic particles and dominated by the e.m.

$$f_{em} + \frac{1}{(e/h)_{C}} (1 - f_{em})$$

$$f_{em} + \frac{1}{(e/h)_{S}} (1 - f_{em})$$

e.g. if: (e/h) = **1.3(S)** vs **4.7(C)**

$$f_m + 0.21(1 - f_{em})$$

 $f_m + 0.77(1 - f_{em})$

$$E = \frac{S - \chi C}{1 - \chi}$$
Universally
valid!
with: $\chi = \frac{1 - (h/e)_S}{1 - (h/e)_C}$

 χ is independent of both: Energy Type of hadron

Dual-Readout Fiber-Sampling Calorimeters

calorimetric technique

> 2003 Copper DREAM 2m long, 16.2 cm wide 19 towers, 2 PMT each Sampling fraction: 2%

Copper, 2 modules 2012 **RD52**

Each module: $9.3 * 9.3 * 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: 4.5%, 10 λ_{int}

2012 Lead, 9 modules **RD52**

Each module: $9.3 * 9.3 * 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: 5%, 10 λ_{int}

In the past 20 years the DREAM/RD52 built and tested different prototypes that confirmed the feasibility of this

INFN Pavia

Some DREAM/RD52 results

Latest energy resolution performance:

FCC Week - Amsterdam, 10 April 2018

References:

a) NIM A735, 130-144 (2014) b) NIM A537, 537-561 (2014) NIM A735, 120 (2014) **c**)

6

Some DREAM/RD52 results

Latest energy resolution performance:

FCC Week - Amsterdam, 10 April 2018

References: a) NIM A735, 130-144 (2014) b) NIM A537, 537-561 (2014) NIM A735, 120 (2014) **C**)

Particle ID (hadron/electron separation):

- Lateral shower profile
- Difference C/S signal
- Starting time of PMT signals
- Signal charge/amplitude ratio

A multivariate analysis reached a particle ID capability of:

> ε(e-) = 99.8% @ R(π-) ~ 500

Lateral shower profile

Difference C/S signal

4π simulations

Projective layout: "wedge" geometry

It covers the full volume up to $|\cos(\theta)| = 0.995$, with **92** different types of towers (wedge)

A typical one in the barrel:

- $\Phi \mathbf{x} \Delta \boldsymbol{\theta} = \mathbf{I.27}^{\circ} \mathbf{X} \mathbf{I.27}^{\circ}$
- $^{\text{m}}$ length of 250 cm (~ 10 λ)
- about 4000 fibres (starting @ different depths to keep constant the sampling fraction)

FCC Week - Amsterdam, 10 April 2018

PRELIMINARY RESULTS (to be validated)

- Each tower calibrated to 20 GeVe-
- \ll Incident angle of (1°, 1.5°)
- M Tower response: **E**_{mean}/**E**_{beam}
- L.Y. for C channel ~ 30 pe/GeV (as in RD52)

Tower response:

Barrel region: within 0.2% Endcap region: within 2%

4π simulations

Projective layout: "wedge" geometry

It covers the full volume up to $|\cos(\theta)| = 0.995$, with 92 different types of towers (wedge)

A typical one in the barrel:

- $\Phi \mathbf{x} \Delta \boldsymbol{\theta} = \mathbf{I.27}^{\circ} \mathbf{X} \mathbf{I.27}^{\circ}$
- $^{\text{m}}$ length of 250 cm (~ 10 λ)
- about 4000 fibres (starting @ different depths to keep constant the sampling fraction)

FCC Week - Amsterdam, 10 April 2018

PRELIMINARY RESULTS (to be validated)

In the barrel region:

EM RESOLUTION:

e- from **10** to **100 GeV** Average response: 100.0 ± 0.4 (%)

The hadronic energy resolution and the response to single hadrons should be appropriate. 9

PMTvs SiPM readout

How to fit such a geometry in a collider experiment?

Using a SiPM readout

Advantages

- Compact readout: no fibres sticking out (antennas)
- **Possible longitudinal** segmentation
- **Operation in a magnetic field**
- efficiency (PDE):
 - Cherenkov photoelectrons are
 the limiting factor to the hadronic calorimeter resolution

FCC Week - Amsterdam, 10 April 2018

Higher photon detection

(Potential) Disadvantages

- Signal saturation
- **Optical crosstalk between Cherenkov and scintillating** signals
- **Dynamic range**
- Some instrumental effects:
 - Temperature gain variation, dark count rate, etc.

IO

2017 test beam layout/selection

A 112 cm long, 15 x 15 mm² wide, module was built from stacked **brass** layers, housing 1 mm diameter clear & scintillating fibres* with a **pitch of 1.5 mm** ~ 112 cm long, 15 x 15 mm²

- $Xo = 29 mm, R_M = 31 mm$
- and **36%**(C)

- # Trigger: (T₁.T₂.T_H)
- **Preshower** detector: identifies e-
- Muon counter: identifies μ

*Scintillating fibres: Kuraray SCSF-78 Cherenkov fibres: Mitsubishi SK40

The calorimeter is 39 Xo deep and has an effective radius of 0.22 RM

 \wedge According to GEANT4 simulations the em shower **containment** is 45% (S)

II

2017 test beam SiPM-based readout

SiPM

HAMAMATSU S13615-1025				
Sensitive area	$1 \times 1 \text{ mm}^2$			
Cell pitch	$25~\mu{ m m}$			
No. of pixels	1584			
Peak Photon Detection Efficiency	25%			
Breakdown voltage V _{br}	53 V			
Recommended operational voltage V_{op}	$V_{br} + 5V$			
Gain at V _{op}	$7 imes 10^5$			
Dark Count Rate at Vop	50 kps			
Optical Crosstalk at Vop	1%			

Two different layers: Cupstream, S downstream

Real-time equalization of the sensor response

FCC Week - Amsterdam, 10 April 2018

MADA: Multichannel Analog to Digital **Acquisition system**

- 32 channel digitizer
- sampling rate 80MSpS/14-bit ADC
- FPGA-based: real-time charge integration

12

Results: optical crosstalk

- an order of magnitude in intensity, the optical crosstalk between the signals is a major challenge
- Direct measurement:
 - Only one uncovered S fibre illuminated (1456 fired cells)
 - The sum of all 32 C signals recorded
 - The matrix shows the mean number of fired cells read out by each SiPM

z max truncated to 5 fired cells

Since the two types of fibres are **located very close** to each other and carry light signals that differ by more than

Results: light yield

Cherenkov signal

- $W_{\rm op} = 5.5 V_{\rm ov} (57.5 V)$
- A mean number of ~ 28.4 fired cells/GeV
- Correcting for the containment (36%)
 69 ± 5 fired cells/GeV

LY 2.3 times larger than with PMTs Stochastic term improved from 13.9%/VE up to 10%/VE

FCC Week - Amsterdam, 10 April 2018

Results: light yield

Cherenkov signal

- $W_{\rm op} = 5.5 V_{\rm ov} (57.5 V)$
- A mean number of ~ 28.4 fired cells/GeV
- Correcting for the containment (36%)
 69 ± 5 fired cells/GeV

LY 2.3 times larger than with PMTs Stochastic term improved from 13.9%/VE up to 10%/VE

FCC Week - Amsterdam, 10 April 2018

Scintillation signal

- Correcting for non-linearity response (first approximation)
- Correcting for the containment (45%)
 3200 ± 200 fired cells/GeV

hh ee he

Results: spatial resolution

The possibility of separately reading each fibre allows: * to sample em showers with a millimeter spatial resolution

Electrons (e-)

Simulated energy deposition in scintillating fibres from 50 GeV

Pions $(\pi$ -)

hh <mark>ee</mark> he

Results: lateral shower profiles

- The possibility of separately reading each fibre allows: * to sample em showers with a millimeter spatial resolution
 - to measure the lateral profiles very close to the shower axis

For each selected event:

find the shower axis (using CoG):

$$\bar{x} = \frac{\sum_i x_i E_i}{\sum_i E_i}, \quad \bar{y} = \frac{\sum_i y_i E_i}{\sum_i E_i}$$

find distance of each fibre to the shower axis:

$$r = \sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}$$

bin data (0.6 mm pitch) and find average

Results: lateral shower profiles

- The possibility of separately reading each fibre allows: * to sample em showers with a millimeter spatial resolution
 - * to measure the lateral profiles very close to the shower axis

Radius of cylinder around shower axis (mm)

For each selected event:

find the shower axis (using CoG):

$$\bar{x} = \frac{\sum_i x_i E_i}{\sum_i E_i}, \quad \bar{y} = \frac{\sum_i y_i E_i}{\sum_i E_i}$$

find distance of each fibre to the shower axis:

$$r = \sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}$$

bin data (0.6 mm pitch) and find average

About **half** of the energy is deposited within **few mm** from the shower axis and ~ 10% within 1 mm

Results: longitudinal segmentation

- The possibility of separately reading each fibre allows:
 - * to sample em showers with a millimeter spatial resolution
 - * to measure the lateral profiles very close to the shower axis
 - * to enable a possible longitudinal segmentation

- **Particle ID** in multi-particle environment has never been studied Possible ways to deal with it:
 - 1. Put fibres starting at different depths:
 - Keep the one-compartment design but multiply the number of fibres by 2
 - The additional fibres are shorter by $1 \lambda_1$

2. Measure time properties of detecting photons:

- ToT, PkT, Ti, Tf?
- A real-time (feature-extracting) processor?

25 cm

Next steps

Short term (2018 test beam):

- For the **IDEA** Vertical Slice:
 - Understand the **effect** of a **preshower** on the calorimeter performance
 - Test an RD52 (lead) module with the **dual-length fibre** option
- For the **SIPM**-based module:
 - **Reduce optical crosstalk** \Rightarrow improve fibre **insulation** 4.(**|||**),
 - **Prevent the saturation** for S light \Rightarrow apply a **filter** and improve **dynamic range**
 - **Increase the cherenkov LY** ⇒ use an **aluminized glass mirror**
 - Test channel **grouping**/adding (1, 2, 4, 6, 9 channels summed up)

Next steps

Short term (2018 test beam):

- For the **IDEA** Vertical Slice:
 - We Understand the effect of a preshower on the calorimeter performance
 - Test an RD52 (lead) module with the **dual-length fibre** option
- For the **SIPM**-based module:
 - **Reduce optical crosstalk** \Rightarrow improve fibre **insulation**
 - **Prevent the saturation** for S light \Rightarrow apply a **filter** and improve **dynamic range**
 - **Increase the cherenkov LY** \Rightarrow use an **aluminized glass mirror**
 - Test channel **grouping**/adding (1, 2, 4, 6, 9 channels summed up)

Middle and Long term (3-year R&D):

- Increase the SiPM module dimensions for a **full electromagnetic shower containment**
- Find an optimal readout electronics solution (ASIC, FPGA, etc)
- Investigate machining aspects and a scalable solution for a 4π geometry
- Geant₄ full simulation: study the impact of different absorber materials on the calorimeter performance, investigate the main physics channels (i.e. assess particle ID capabilities in multi-particle environment, detection of 2 jets and 2 tau's final states from H,W and Z)

FCC Week - Amsterdam, 10 April 2018

2I

All the publications used can be found at: http://www.phys.ttu.edu/~dream/index.html

Please join us also at the **Poster Session**

Backup Slides

More About Simulations

- entering parallel to the fibres \rightarrow this term can be avoided with a **small tilt** of the fibre axis outside the numerical fibre aperture
- Calibration was done with 40 GeV electrons beams

- of the shower energy, so that leakage fluctuations were dominating the resolution capability
- be observed at lower signal values

For the hadronic response is used a 80 x 80 x 250 cm³ copper matrix, to obtain a containment of ~ 99%

In the **lead module** the limited lateral size of the matrix (~ $i\lambda$) was allowing to collect, in average, only the **90%** The resolution was also affected by the finite light attenuation length of fibres, causing early starting showers to

- Their main properties:
 - **Copper:** $\rho = 11.3 \text{ g/cm}^3$, $X_0 = 0.56 \text{ cm}$, $R_M = 1.60 \text{ cm}$, $\lambda_{int} = 15.1 \text{ cm}$
 - **Lead:** $\rho = 8.96 \text{ g/cm}^3$, $X_0 = 1.44 \text{ cm}$, $R_M = 1.56 \text{ cm}$, $\lambda_{int} = 17.0 \text{ cm}$
- This means that for hadronic showers, a full coverage solution with **lead will give broader and longer showers** and a total mass 42% heavier than copper.
- Being the C light almost exclusively produced by em component and the e/mip ratio 50% higher for copper than for lead, the C LY should be higher in copper, resulting in a better hadronic resolution.
- But copper extrusion with the required tolerances in planarity and groove parallelism is not yet an established industrial processes.
- Alternative copper alloys (brass, bronze) will be investigated as well.

FCC Week - Amsterdam, 10 April 2018

Dual-Readout Calorimetry

Hadronic data points (S,C) located around straight lines

The plot shows that the data points are located on a locus, clustered around a line that intersects the C/S =1 line at the nominal beam energy

Dual-Readout at Work

An example of the improvement that can be expected in the measurement of a sample of **100 GeV** π 's if $f_{e.m.}$ is NOT measured (top plot) or if fe.m. bins are singled out

SiPMs

Calibration

hh ee he

- Calibration done at 21.5 °C:
 - Same light conditions (few photoelectrons) at different V_{Bias}
 - Peak to Peak measured using the Multi Gaussian Fit
- Linear fit used to:
 - distinguishable)
 - * to measure the $V_{Bk} = 51.71 \pm 0.39 V (error < 1\%)$

 \clubsuit to extrapolate the Peak to Peak distance at low V_{Bias} (where the peaks are no longer

PDE Measurements hh ee he

- **Relative PDE** measurement at different V_{Bias}:

 - Number of fired cells extrapolated using the calibration

 \clubsuit Same amount of light for all measurements (24% of occupancy at nominal V_{Bias}) Relative PDE calculated —> absolute PDE reference point: 25% at + 5 V_{Ov} @ 25 °C

Non-Linearity Correction

 $M \quad \text{Correction applied:} \quad N_{fired} =$

$$1584 \left(1 - e^{\frac{-\#Photons*PDE}{1584}} \right)$$

Principles

SiPM = High density (~104/mm²) matrix of diodes with a common output, reverse biased, working in Geiger-Müller regime

When a photon hits a cell, the generated charge carrier triggers avalanche an multiplication in the junction by impact ionization, with gain at the 10⁶ level

Operation

- SiPM may be seen as a collection of binary cells, fired when a photon in absorbed
- "counting" cells provides an information about the intensity of the incoming light:

Principles

SiPM = High density (~104/mm²) matrix of diodes with a common output, reverse biased, working in Geiger-Müller regime

When a photon hits a cell, the generated charge carrier triggers an avalanche multiplication in the junction by impact ionization, with gain at the 10⁶ level

Operation

- SiPM may be seen as a collection of binary cells, fired when a photon in absorbed
- "counting" cells provides an information about the intensity of the incoming light:

It's possible to choose the "best fit" device for each application:

in terms of pixel pitch:

75 & 100 µm are available as well

Not to mention the variety of available options for the front-end, the packaging and the near future integration with the read-out electronics

Substrate

Bump ball

Chip

Active area

Contact pad (or connector)

Recently, thanks to the Through Silicon Via (TSV) technology, HAMAMATSU offered arrays built up on a mosaic of I x I mm² sensors, quite appealing for the envisaged application:

Parameters

Effective photosensitive are Pixel pitch Number of pixels / channel Geometrical fill factor

Parameters

Spectral response range

Peak sensitivity wavelength

Photon detection efficiency

Breakdown voltage

Recommended operating vo

Dark Count

Crosstalk probability

Terminal capacitance

Gain^{*5}

	S13615		11
	-1025	-1050	Unit
ea	1.02	mm ²	
	25	50	μm
	1584	396	-
	47	74	%

		Symbol	S13	615	Linit
	Symbol	-1025	-1050	Unit	
		λ	320 to 900		nm
n		λр	450		nm
at λp ^{*3} PDE 25 40		40	%		
		V _{BR} 53 ±5		V	
oltage ^{*4}		V _{op}	V _{BR} + 5	V _{BR} + 3	V
Тур.			5	0	kana
	Max.	-	15	50	kcps
	Тур.	-	1	3	%
		Ct	40		pF
		М	7.0x10 ⁵	1.7x10 ⁶	-
					1

SiPM: 8x8 Matrix

The development was based on 8x8 channel arrays and we have got in September 2016 the first samples ever produced (serial no. 1 & 2) with both 25 µm and 50 µm pitch [the latter only was used in the test beam]

A1 ~ H8 : CHANNEL No.

GENERAL TOLERANCE : ±0.1

Sensor Boards

The sensor system

- the daughter board providing an independent bias to the 64 sensors and integrating T measurement for gain compensation
- 2. the mother board
- amplifying & shaping
 the output of each
 sensor
- routing the signals to the digitization system
- 3. the backplane board allowing to probe via mcx connectors each channel

Cut for E- Selection

Geometrical cut: events with the maximum signal in the central box (4x4)

- Noise cut: events with the total number
 20 ph.e.
- Muons cut: events with a signal in the muon counter below threshold
- **PSD cut:** events with a signal in the PSD above threshold

FCC Week - Amsterdam, 10 April 2018

Noise cut: events with the total number of fired cells (sum on all SiPM signals) greater than

nuon counter below threshold) above threshold

- **Geometrical cut:** events with the maximum signal in the central box (4x4)
- than **20** ph.e.
- **Muons cut:** events with a signal in the muon counter below threshold
- **PSD cut:** events with a signal in the PSD above threshold

Noise cut: events with the total number of fired cells (sum on all SiPM signals) greater

