Study of Reflectivity and Photo Yield on FCC-hh proposed beam screen surfaces

Eliana La Francesca1,2, A. Liedl1, M. Angelucci1, A. Sokolov3, M. G. Sertsu3, F. Schäfers3, F. Siewert3, and R. Cimino1
1 - LNF-INFN, Frascati, Italy; 2 - Università Sapienza di Roma, Rome, Italy; 3 - Helmholtz Zentrum Berlin, Berlin, Germany

Introduction
In FCC-hh, large production of Synchrotron Radiation (SR) is expected. SR can cause: heat load on the accelerator walls, photo- electrons triggering e-cloud effects and/or single bunch instabilities, photon stimulated desorption etc. Simulation programs need realistic input parameters to trace where all photons (direct or reflected) interacts within the vacuum vessel, how many electrons are than produced etc. Therefore, an experimental characterization of optical properties of technical surfaces, in particular reflectivity (R) and photo yield (PY), becomes mandatory at as close as possible to realistic conditions[1]. In FCC-hh, SR Light will impinge on the accelerator walls at 0.077° with energies going from few eV to more than 4 KeV.

Experimental
R and PY were studied at the optical beamline “at wavelength Reflectometry” at Bessy II [2]. With this set-up we can reach incidence angles as low as 0.25° scanning the photon energy between 35-1800 eV.

- Specular Reflectivity is measured when the detector (accepting ±0.35°) is at the geometrical θ/2θ position.
- Total Reflectivity is measured by integrating all signals, specular and off-specular, in plane and off-plane, at a given incidence angle and photon energy.
- In all cases we contemporarily measure the Photo Yield (PY).

Specular R(E) and PY(E) at fixed angles
- R and PY at different energies with fixed incident angles can be measured. Such values do strongly depend on roughness [3].
- At such low incidence angles R and PY are also affected by light contaminants (C, O, etc).
- Scrubbing, ice formation on cold surfaces and “aging” may affect R and PY.

Specular R(θ) and PY(θ) at fixed energy
Analysis of R(θ) and PY(θ) highlights the importance of measuring at as close as possible operating conditions.

- R(θ) for flat surfaces is higher for smaller incidence angles and for lower energies.
- PY(θ) results from two competing effects:
 - It increases with θ due to an enhanced photo absorption (reduced R).
 - It decreases with θ due to a deeper radiation penetration and low electron mean free path.

Total Reflectivity (θ)
In rough samples and in geometrically modified surfaces, it is essential to consider Total reflectivity and not just the specular one.

Conclusions
- Ultimate Synchrotron Radiation metrology has developed experimental tools to be used to extract parameters of interest for FCC-hh R&D.
- Morphologically modified structures, need to be experimentally studied: their simulated optical properties need experimental validation.

References

Acknowledgements
This work was supported by LNF, MiCA gr V. We thank the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730872 for support and EuroCirCol collaboration for the LASE sample. We thank also L. Bellafont and L. Gonzalez for their help.