

BEAM SCREEN SURFACE CHARACTERISATION FOR HIGH ENERGY BEAMS: TEST RESULTS AT FRASCATI.

R. Cimino, M. Angelucci, L. Spallino, E. La Francesca¹, A. Liedl and R. Larciprete²

LNF-INFN Frascati (Rome), Italy.

1) Also at: University of Rome "La Sapienza" – Rome, Italy

2) Also at: CNR-ISC, Rome, Italy

BEAM SCREEN

Eur CirCol

BEAM SCREEN SURFACE

BEAM SCREEN INTERACT WITH:

EuroCirCol

A key to New Physics

Photons

Electrons

3

> (lons)

1 eet

BEAM SCREEN / PHOTONS

Photons induce:

Version 1.0 (2014-02-11)	LHC	HL-LHC	FHC-hh
SR power per ring [MW]	0.0036	0.0073	2.4 (2.9)
Arc SR heat load [W/m/aperture]	0.17	0.33	28.4 (44.3)
Critical photon energy [keV]	0.044		4.3 (5.5)

- Heat load
- Photo electrons and related instabilities
- Photo induced desorption

To be studied (vs. time):

- Reflectivity (where photons interact with BS)
- Photo Yield (Number of photo-el produced)
- Photo induced desorption

Essential features:

Photon energy

Very grazing geometry (@LHC: 0.28°; @ FCC-hh 0.08°)

Of moderate/partial importance:

Representative surfaces (unbaked, untreated, at

operating temperature, etc.)

BEAM SCREEN / ELECTRONS

Heat load

>

- Secondary electrons and related instabilities (e-cloud)
- Photo induced desorption

To be studied (Vs. time):

SEY Electron induced desorption Surface chemistry

R. Cimino and T. Demma "Electron cloud in Accelerators" Int. J. Mod. Phys. A 29 (2014) 1430023

Eur CirCol

two Ultra high vacuum systems

heeh

Roberto Cimino

We are able to insert as received samples (no bake-out or anything) from atmosphere to UHV (<10⁻¹⁰ mbar)

two Ultra high vacuum systems

FCC Week 10-4-2018

"Ad hoc" surface preparation:Sputtering

- Heating
- Controlled deposition
 "in situ" coating

two Ultra high vacuum systems

9

FCC Week 10-4-2018

Roberto Cimino

two Ultra high vacuum systems

10

- LNF-cryogenic manipulator
- ✤ sample at 15-300 K
- Gas dosing on cold surfaces

FCC Week 10-4-2018

Roberto Cimino

FCC Week 10-4-2018

Roberto Cimino

2.0 1.8 1.6 1.4

1.0

0.8

0.2

0.0

10

20

30

Temperture (K)

heehe

40

50

STRATEGY AT LNF

FCC Week 10-4-2018

Roberto Cimino

STRATEGY AT LNF

DADNE Bending magnet (same as HE-LHC) FLUX 1015 Elettra Undulators (Central Cone) photons/s/mrad/0.1%BW Daóne 10¹³ Elettra NSLS. Adee 10¹¹ 10^{9} 10 10 3 10 4 10 5 10 ^Z 10 10 ENERGY (eV)

White light >50 μA on sample

Synchrotron Beam-lines

White light ~ 1 μA on sample (to be optimized)

FCC Week 10-4-2018

Roberto Cimino

When resources are not available we use external facilities:

Grazing incidence reflectometry and Photon Yield

FCC Week 10-4-2018

A.A.Sokolov,et al, Proc.of SPIE92060J-1-13(2014)

Roberto Cimino

SELECTED RESULTS:

- SEY (in the entire energy range) at Low temperatures
- Electron induced desorption
- Thermal desorption to test thermal stability
- Photon Reflectivity and Photo Yield at grazing incidence.
- Photo stimulated desorption, photon scrubbing.

SEY at Low temperatures

Electron induced desorption

Pressure (10⁻¹¹ mbar)

Dartial°

Å

- Study Electron Stimulated
 - Desorption with Mass spectrometer
- SEY at 930 decreases with el. dose

Energy (eV)

600

Continuous SEY scans

20 30

Time (min)

10

40

e<

200

B

SEY

2.5

2.0

1.5

3.5

3.0

2.5

2.0

1.5

1.0

0.5

SΕΥ

• SEY at 10 eV remains constant

400

200

SEY and mass spectrometry: ideal to study el. Stimulated desorption

800

FCC Week 10-4-2018

Roberto Cimino

20

Dose°(10⁻³°C/mm²)

Continuous irradiation @ 200 eV

Ar Partial Pressure

Secondary Electron Yeld

Euro(CirCo

(a)

70 60 20 100 (a) 16 L 50 T-Cu

At higher coverages the desorption is dominated by usual Ar/Ar Vander-Waals interaction

At low coverages the desorption is dominated by Ar/LASE interaction

See Poster 259: Study of Vacuum Stability and Desorption processes at low Temperature for various FCC-hh candidate Materials By Luisa Spallino et al

FCC Week 10-4-2018

R. Valizadeh et al.: Applied Surface Science 404 (2017) p. 370

Roberto Cimino

T (K)

Thermal desorption

Implications for thermal stability

For ices dominated by Ar-Ar Van-der-Waals bond strength, Ar desorbs as expected T ~ 25-30 K.

For ices dominated by Ar-LASE, Ar desorbs both at T ~ 25-30 K and in a much wider range

See Poster 259: Study of Vacuum Stability and Desorption processes at low Temperature for various FCC-hh candidate Materials By Luisa Spallino et al

FCC Week 10-4-2018

Roberto Cimino

@ Bessy II "optic beamline".

Photon Reflectivity and Photo Yield at grazing incidence

HZB Helmholtz

Zentrum Berlin

Analysis of $R(\theta)$ and $PY(\theta)$ highlights the importance of measuring at as close as possible operating conditions.

- > $R(\theta)$ for flat surfaces is higher for smaller incidence angles and for lower energies.
- \blacktriangleright **<u>PY(0)</u>** results from two competing effects:
- It increases with θ_i due to an enhanced photo absorption (reduced R).
 - It decreases with θ_i due to a deeper radiation penetration and low electron mean free path.

22

By Eliana La Francesca et al

FCC Week 10-4-2018

Roberto Cimino

@ Bessy II "optic beamline".

- Ultimate Synchrotron Radiation metrology is very useful to our studies
- Importance to work at very grazing angles
- Importance of measuring Specular as well as total Reflectivity
- Morphologically modified structures, need be to experimentally studied: their simulated optical properties need experimental validation. (see poster)

See Poster 258: Study of Reflectivity and Photo Yield on FCC-hh proposed beam screen surfaces

By Eliana La Francesca et al

Roberto Cimino

Back at LNF: DA\PhiNE-L

Photo stimulated desorption, photon scrubbing

uroCirCol

Follow: DESORPTION, PY, SEY, SURFACE CHEMISTRY MODIFICATION CONTEMPORARILY!

EuroCirCol

Back at LNF: DAΦNE-L

Photo stimulated desorption, photon scrubbing

The goal (within a collaborative effort with CERN*) is to have a "White light" irradiation test facility to study desorption properties on long and real beam-pipes and to correlate such results with the one obtained on small samples

*KE3724/TE/HL-LHC-Addendum No.4 to Agreement TKN 3083

FCC Week 10-4-2018

Roberto Cimino

- A multi- technique material science approach is the key for a successful R&D
- Working at as "close as possible" operation condition is essential to be predictive
- LNF is now running and implementing a "unique" facility.
- SR is a key feature: we hope that it will last long @ DA Φ NE!

THE TEAM AT LNF ...

GOES COLD!

Acknowledgements

INFN Istituto Nazionale di Fisica Nucleare L. Gonzalez, Mario Commisso, Theo Demma, Davide Remo Grosso, Dafne-L and Dafne Accelerator group @ INFN-LNF.

V. Baglin, I. Belafont, P, Chiggiato, R. Kersevan, M. Jimenez, G. Iadarola, G. Rumolo, M. Taborelli, F. Zimmermann etc... *CERN, Geneva, Switzerland*

Franz Schäfers, M. G. Sertsu, F. Siewert A. Sokolow Institute for Nanometre Optics and Technology (INT) Berlin

Acknowledgements

INFN Istituto Nazionale di Fisica Nucleare L. Gonzalez, Mario Commisso, Theo Demma, Davide Remo Grosso, Dafne-L and Dafne Accelerator group @ INFN-LNF.

CERN

V. Baglin, I. Belafont, P, Chiggiato, R. Kersevan, M. Jimenez, G. Iadarola, G. Rumolo, M. Taborelli, F. Zimmermann etc... *CERN, Geneva, Switzerland*

Franz Schäfers, M. G. Sertsu, F. Siewert A. Sokolow Institute for Nanometre Optics and Technology (INT) Berlin

