A Muon detector based on the \(\mu \)-RWELL technology

Overview

• Requirements of Muon detectors
Overview

• Requirements of Muon detectors

• Muon detectors for future accelerators (FCC-ee, FCC-hh, CepC, SppC, CLIC, ILC)
Overview

• Requirements of Muon detectors
• Muon detectors for future accelerators (FCC-ee, FCC-hh, CepC, SppC, CLIC, ILC)
• Micro Pattern Gas Detectors (MPGD)
Overview

• Requirements of Muon detectors
• Muon detectors for future accelerators (FCC-ee, FCC-hh, CepC, SppC, CLIC, ILC)
• Micro Pattern Gas Detectors (MPGD)
• An example of a new MPGD: the μ-RWELL and its application for future muon systems
Overview

- Requirements of Muon detectors
- Muon detectors for future accelerators (FCC-ee, FCC-hh, CepC, SppC, CLIC, ILC)
- Micro Pattern Gas Detectors (MPGD)
- An example of a new MPGD: the μ-RWELL and its application for future muon systems
- Conclusions
Muon detectors in large HEP experiments
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{pT}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

• **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5} \text{ GeV}^{-1}$

• With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5m$, this translates to
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$
- With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5$ m, this translates to
 - space resolution, σ_x, of a few hundred microns
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$
- With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5$ m, this translates to
 - space resolution, σ_x, of a few hundred microns
- **Detection efficiency** $\sim 98-99\%$ over a large solid angle
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

• **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$

 • With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5m$, this translates to
 • space resolution, σ_x, of a few hundred microns

• **Detection efficiency** $\sim 98-99\%$ over a large solid angle
 • Three space points along a muon track
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

• **Momentum resolution**, $\sigma_{pT}/p_T^2 \approx 1-2 \times 10^{-5} \text{ GeV}^{-1}$

 • With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5\text{m}$, this translates to
 • space resolution, σ_x, of a few hundred microns

• **Detection efficiency** ~ 98-99% over a large solid angle
 • Three space points along a muon track
 • At least 3 muon stations
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- Momentum resolution, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5} \text{ GeV}^{-1}$
 - With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5m$, this translates to
 - space resolution, σ_x, of a few hundred microns
- Detection efficiency $\sim 98-99\%$ over a large solid angle
 - Three space points along a muon track
 - At least 3 muon stations
 - Redundancy is an asset
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$
 - With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5m$, this translates to
 - space resolution, σ_x, of a few hundred microns
- **Detection efficiency** $\sim 98-99\%$ over a large solid angle
 - Three space points along a muon track
 - At least 3 muon stations
 - Redundancy is an asset
- **BX identification** (for hadron colliders)
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, \(\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5} \text{ GeV}^{-1} \)
- With a B field of 2-4 Tesla and a few muon stations at a radius \(r > 5 \text{m} \), this translates to
 - space resolution, \(\sigma_x \), of a few hundred microns
- **Detection efficiency** \(\sim 98-99\% \) over a large solid angle
 - Three space points along a muon track
 - At least 3 muon stations
 - Redundancy is an asset
- **BX identification** (for hadron colliders)
 - time resolution, \(\sigma_t \), of 5-10 ns
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$
 - With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5m$, this translates to
 - space resolution, σ_x, of a few hundred microns
- **Detection efficiency** ~ 98-99% over a large solid angle
 - Three space points along a muon track
 - At least 3 muon stations
 - Redundancy is an asset
- **BX identification** (for hadron colliders)
 - time resolution, σ_t, of 5-10 ns
- **Standalone muon trigger** (for hadron colliders)
Muon detectors in large HEP experiments

These are the **main requirements** of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5} \text{ GeV}^{-1}$
 - With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5\text{m}$, this translates to
 - space resolution, σ_x, of a few hundred microns
- **Detection efficiency** $\sim 98-99\%$ over a large solid angle
 - Three space points along a muon track
 - At least 3 muon stations
 - Redundancy is an asset
- **BX identification** (for hadron colliders)
 - time resolution, σ_t, of 5-10 ns
- **Standalone muon trigger** (for hadron colliders)
 - Fast level-1 trigger response from the muon system
Muon detectors in large HEP experiments

These are the main requirements of a typical large muon detection system:

- **Momentum resolution**, $\sigma_{p_T}/p_T^2 \approx 1-2 \times 10^{-5}$ GeV$^{-1}$
 - With a B field of 2-4 Tesla and a few muon stations at a radius $r > 5$ m, this translates to
 - **space resolution**, σ_x, of a few hundred microns
- **Detection efficiency** $\sim 98-99\%$ over a large solid angle
 - Three space points along a muon track
 - At least 3 muon stations
 - Redundancy is an asset
- **BX identification** (for hadron colliders)
 - **time resolution**, σ_t, of 5-10 ns
- **Standalone muon trigger** (for hadron colliders)
 - Fast level-1 trigger response from the muon system
- Mass producible by **industry**
Muon detectors in large HEP experiments
Muon detectors in large HEP experiments

Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps.
Muon detectors in large HEP experiments

Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps. Detectors designed for future colliders (FCC-ee, FCC-hh, CLIC, ILC, CepC, SppC) adopt a similar design.
Muon detectors in large HEP experiments

Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps.

Detectors designed for future colliders (FCC-ee, FCC-hh, CLIC, ILC, CepC, SppC) adopt a similar design.

All these detectors have a length exceeding 20m and a radius of at least 7-8m.
Muon detectors in large HEP experiments

Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps.

Detectors designed for future colliders (FCC-ee, FCC-hh, CLIC, ILC, CepC, SppC) adopt a similar design.

All these detectors have a length exceeding 20m and a radius of at least 7-8m.

Muon detection systems need to identify muons and measure their momentum with accurate precision. In hadronic collisions they also have to provide a standalone muon trigger and BX identification.
Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps. Detectors designed for future colliders (FCC-ee, FCC-hh, CLIC, ILC, CepC, SppC) adopt a similar design. All these detectors have a length exceeding 20m and a radius of at least 7-8m. Muon detection systems need to identify muons and measure their momentum with accurate precision. In hadronic collisions they also have to provide a standalone muon trigger and BX identification. Muon systems are typically composed of several stations (ranging from 2 to 6) of detectors interleaved in the iron yoke (or in air) at several meters from the IP.
Muon detectors in large HEP experiments

Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps.

Detectors designed for future colliders (FCC-ee, FCC-hh, CLIC, ILC, CepC, SppC) adopt a similar design.

All these detectors have a length exceeding 20m and a radius of at least 7-8m.

Muon detection systems need to identify muons and measure their momentum with accurate precision. In hadronic collisions they also have to provide a standalone muon trigger and BX identification.

Muon systems are typically composed of several stations (ranging from 2 to 6) of detectors interleaved in the iron yoke (or in air) at several meters from the IP.

The barrel part of a muon detection system has dimensions of a few thousands of m², while the endcaps are typically about half of this size.
Muon detectors in large HEP experiments

Most current large detector experiments have a cylindrical structure closed at the two ends by 2 endcaps. Detectors designed for future colliders (FCC-ee, FCC-hh, CLIC, ILC, CepC, SppC) adopt a similar design. All these detectors have a length exceeding 20m and a radius of at least 7-8m.

Muon detection systems need to identify muons and measure their momentum with accurate precision. In hadronic collisions they also have to provide a standalone muon trigger and BX identification. Muon systems are typically composed of several stations (ranging from 2 to 6) of detectors interleaved in the iron yoke (or in air) at several meters from the IP.

The barrel part of a muon detection system has dimensions of a few thousands of m², while the endcaps are typically about half of this size.

For evident reasons of price, gas detectors are the obvious choice for equipping these extremely large surfaces.
Muon detectors in large HEP experiments
Muon detectors in large HEP experiments

Gas detectors used for muon detection systems can be separated into three main groups:
Muon detectors in large HEP experiments

Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
Muon detectors in large HEP experiments

Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
 - Relatively simple construction, good space and time resolution
Muon detectors in large HEP experiments

Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
 - Relatively simple construction, good space and time resolution
- **RPCs**
Muon detectors in large HEP experiments

Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
 - Relatively simple construction, good space and time resolution

- **RPCs**
 - Simple and cheap construction, very good time resolution, poor space resolution
Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
 - Relatively simple construction, good space and time resolution

- **RPCs**
 - Simple and cheap construction, very good time resolution, poor space resolution

- **Micro Pattern Gas Detectors** (GEM, MicroMegas, µRWell, etc.)
Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
 - Relatively simple construction, good space and time resolution

- **RPCs**
 - Simple and cheap construction, very good time resolution, poor space resolution

- **Micro Pattern Gas Detectors** (GEM, MicroMegas, μRWell, etc.)
 - Newer technology, provides both good space and time resolution.
Gas detectors used for muon detection systems can be separated into three main groups:

- **Wire detectors** (DTs, CSCs, MDT, etc.)
 - Relatively simple construction, good space and time resolution

- **RPCs**
 - Simple and cheap construction, very good time resolution, poor space resolution

- **Micro Pattern Gas Detectors** (GEM, MicroMegas, µRWELL, etc.)
 - Newer technology, provides both good space and time resolution.
 - Uses PCB methods and can be mass produced by industry.
Muon detectors for FCC-ee
Muon detectors for FCC-ee

There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) detector model and the IDEA concept.
There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) detector model and the IDEA concept.

In the CLD detector the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.
There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) detector model and the IDEA concept.

In the CLD detector the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.

In the IDEA detector, the muon detection system is made of three MPGD stations interleaved in the iron return yoke.
There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) detector model and the IDEA concept.

In the CLD detector the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.

In the IDEA detector, the muon detection system is made of three MPGD stations interleaved in the iron return yoke.
There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) detector model and the IDEA concept.

In the CLD detector the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.

In the IDEA detector, the muon detection system is made of three MPGD stations interleaved in the iron return yoke.
Muon detector for FCC-hh
Muon detector for FCC-hh

FCC-hh detector
Muon detector for FCC-hh

FCC-hh detector
Muon detector for FCC-hh

FCC-hh detector

<0.5 kHz/cm2
Muon detector for FCC-hh

FCC-hh detector

<0.5 kHz/cm²
<10 kHz/cm²
Muon detector for FCC-hh

FCC-hh detector

<0.5 kHz/cm²
<10 kHz/cm²

r>1m rate<500 kHz/cm²
Muon detector for FCC-hh

FCC-hh detector

ATLAS muon system HL-LHC rates (kHz/cm\(^2\)):
MDTs barrel: 0.28
MDTs endcap: 0.42
RPCs: 0.35
TGCs: 2
Micromegas and sTGCs: 9-10

Table 4.5: Expected rates on the muon detector when operating at an instantaneous luminosity of \(2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}\) at a collision energy of 14 TeV. The values are averages, in kHz/cm\(^2\), over the chamber with the minimum illumination, the whole region and the chamber with maximum illumination. The values are extrapolated from measured rates at 8 TeV.

<table>
<thead>
<tr>
<th>Region</th>
<th>Minimum</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2R1</td>
<td>162 (\pm) 28</td>
<td>327 (\pm) 60</td>
<td>590 (\pm) 110</td>
</tr>
<tr>
<td>M2R2</td>
<td>15.0 (\pm) 2.6</td>
<td>52 (\pm) 8</td>
<td>97 (\pm) 15</td>
</tr>
<tr>
<td>M2R3</td>
<td>0.90 (\pm) 0.17</td>
<td>5.4 (\pm) 0.9</td>
<td>13.4 (\pm) 2.0</td>
</tr>
<tr>
<td>M2R4</td>
<td>0.12 (\pm) 0.02</td>
<td>0.63 (\pm) 0.10</td>
<td>2.6 (\pm) 0.4</td>
</tr>
<tr>
<td>M3R1</td>
<td>39 (\pm) 6</td>
<td>123 (\pm) 18</td>
<td>216 (\pm) 32</td>
</tr>
<tr>
<td>M3R2</td>
<td>3.3 (\pm) 0.5</td>
<td>11.9 (\pm) 1.7</td>
<td>29 (\pm) 4</td>
</tr>
<tr>
<td>M3R3</td>
<td>0.17 (\pm) 0.02</td>
<td>1.12 (\pm) 0.16</td>
<td>2.9 (\pm) 0.4</td>
</tr>
<tr>
<td>M3R4</td>
<td>0.017 (\pm) 0.002</td>
<td>0.12 (\pm) 0.02</td>
<td>0.63 (\pm) 0.09</td>
</tr>
<tr>
<td>M4R1</td>
<td>17.5 (\pm) 2.5</td>
<td>52 (\pm) 8</td>
<td>86 (\pm) 13</td>
</tr>
<tr>
<td>M4R2</td>
<td>1.58 (\pm) 0.23</td>
<td>5.5 (\pm) 0.8</td>
<td>12.6 (\pm) 1.8</td>
</tr>
<tr>
<td>M4R3</td>
<td>0.096 (\pm) 0.014</td>
<td>0.54 (\pm) 0.08</td>
<td>1.37 (\pm) 0.20</td>
</tr>
<tr>
<td>M4R4</td>
<td>0.007 (\pm) 0.001</td>
<td>0.056 (\pm) 0.008</td>
<td>0.31 (\pm) 0.04</td>
</tr>
<tr>
<td>M5R1</td>
<td>19.7 (\pm) 2.9</td>
<td>54 (\pm) 8</td>
<td>91 (\pm) 13</td>
</tr>
<tr>
<td>M5R2</td>
<td>1.58 (\pm) 0.23</td>
<td>4.8 (\pm) 0.7</td>
<td>10.8 (\pm) 1.6</td>
</tr>
<tr>
<td>M5R3</td>
<td>0.29 (\pm) 0.04</td>
<td>0.79 (\pm) 0.11</td>
<td>1.69 (\pm) 0.25</td>
</tr>
<tr>
<td>M5R4</td>
<td>0.23 (\pm) 0.03</td>
<td>2.1 (\pm) 0.3</td>
<td>9.0 (\pm) 1.3</td>
</tr>
</tbody>
</table>
Muon detector for FCC-hh

FCC-hh detector

ATLAS muon system HL-LHC rates (kHz/cm²):
- MDTs barrel: 0.28
- MDTs endcap: 0.42
- RPCs: 0.35
- TGCs: 2
- Micromegas and sTGCs: 9-10

Table 4.5: Expected rates on the muon detector when operating at an instantaneous luminosity of $2 \times 10^{33} \text{cm}^{-2}\text{s}^{-1}$ at a collision energy of 14 TeV. The values are averages, in kHz/cm², over the chamber with the minimum illumination, the whole region and the chamber with maximum illumination. The values are extrapolated from measured rates at 8 TeV.

<table>
<thead>
<tr>
<th>Region</th>
<th>Minimum</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2R1</td>
<td>162 ± 28</td>
<td>327 ± 60</td>
<td>590 ± 110</td>
</tr>
<tr>
<td>M2R2</td>
<td>15.0 ± 2.6</td>
<td>52 ± 8</td>
<td>97 ± 15</td>
</tr>
<tr>
<td>M2R3</td>
<td>0.90 ± 0.17</td>
<td>5.4 ± 0.9</td>
<td>13.4 ± 2.0</td>
</tr>
<tr>
<td>M2R4</td>
<td>0.12 ± 0.02</td>
<td>0.63 ± 0.10</td>
<td>2.6 ± 0.4</td>
</tr>
<tr>
<td>M3R1</td>
<td>123 ± 18</td>
<td>216 ± 32</td>
<td></td>
</tr>
<tr>
<td>M3R2</td>
<td>3.3 ± 0.5</td>
<td>11.9 ± 1.7</td>
<td>29 ± 4</td>
</tr>
<tr>
<td>M3R3</td>
<td>0.17 ± 0.02</td>
<td>1.12 ± 0.16</td>
<td>2.9 ± 0.4</td>
</tr>
<tr>
<td>M3R4</td>
<td>0.017 ± 0.002</td>
<td>0.12 ± 0.02</td>
<td>0.63 ± 0.09</td>
</tr>
<tr>
<td>M4R1</td>
<td>17.5 ± 2.5</td>
<td>52 ± 8</td>
<td>86 ± 13</td>
</tr>
<tr>
<td>M4R2</td>
<td>1.58 ± 0.23</td>
<td>5.5 ± 0.8</td>
<td>12.6 ± 1.8</td>
</tr>
<tr>
<td>M4R3</td>
<td>0.096 ± 0.014</td>
<td>0.54 ± 0.08</td>
<td>1.37 ± 0.20</td>
</tr>
<tr>
<td>M4R4</td>
<td>0.007 ± 0.001</td>
<td>0.056 ± 0.008</td>
<td>0.31 ± 0.04</td>
</tr>
<tr>
<td>M5R1</td>
<td>19.7 ± 2.9</td>
<td>54 ± 8</td>
<td>91 ± 13</td>
</tr>
<tr>
<td>M5R2</td>
<td>1.58 ± 0.23</td>
<td>4.8 ± 0.7</td>
<td>10.8 ± 1.6</td>
</tr>
<tr>
<td>M5R3</td>
<td>0.29 ± 0.04</td>
<td>0.79 ± 0.11</td>
<td>1.69 ± 0.25</td>
</tr>
<tr>
<td>M5R4</td>
<td>0.23 ± 0.03</td>
<td>2.1 ± 0.3</td>
<td>9.0 ± 1.3</td>
</tr>
</tbody>
</table>

HL-LHC muon system gas detector technologies, and especially MPGDs, would work for most of the FCC-hh detector area.
Muon detectors for CepC
Muon detectors for CepC

In the baseline option, inspired from ILD, the muon detection system is composed of two layers of RPC stations.

An upgrade of the muon detector by using MPGDs could provide a much finer space resolution with a similar time resolution at a relatively modest increase in price.

The fine space resolution of the detectors could allow to obtain a standalone muon momentum measurement and to trace back the muon stabs to the tracker tracks.
Muon detectors for CepC

In the baseline option, inspired from ILD, the muon detection system is composed of two layers of RPC stations.

An upgrade of the muon detector by using MPGDs could provide a much finer space resolution with a similar time resolution at a relatively modest increase in price.

The fine space resolution of the detectors could allow to obtain a standalone muon momentum measurement and to trace back the muon stabs to the tracker tracks.

In the IDEA detector concept, a muon detection system, made of three MPGD stations interleaved in the iron return yoke, is already foreseen.
Principle of operation of MPGDs
Principle of operation of MPGDs

Improve gas detectors
Principle of operation of MPGDs

Improve gas detectors

Slow ion motion
Limited multi-track separation

Reduce multiplication region size
Faster ion evacuation
Higher spatial resolution

S. Franchino, 2016
Principle of operation of MPGDs

Improve gas detectors

Slow ion motion
Limited multi-track separation

Reduce multiplication region size
Faster ion evacuation
Higher spatial resolution

First MPGD: Micro Strip Gas Chamber (MSGC) OED, 1988

S. Franchino, 2016
Principle of operation of MPGDs

Improving gas detectors

- Slow ion motion
- Limited multi-track separation

Reduce multiplication region size
- Faster ion evacuation
- Higher spatial resolution

First MPGD: Micro Strip Gas Chamber (MSGC) OED, 1988

Reduce the size of the detecting cell (~100 µm) using chemical etching techniques
Use PCB technology to obtain very fine electrodes O(10 µm)
Same working principle as proportional wire chambers
- Conversion region (low E field)
- High E field in well localised regions where multiplication happens

S. Franchino, 2016
Evolution of MPGDs

Micro Gap Chambers

Micro Gap Wire Chamber

Micro Wire Chamber

MicroWELL

MicroGroove

MicroPin

R. Bellazziniet al Nucl. Instr. and Meth. A423(1999)125

P. Rehak et al., IEEE Nucl. Sci. Symposium seattle 1999

μPIC

DT Training Seminar

Ochi et al NIMA471(2001)264

S. Franchino, 2016
More recent MPGDs
More recent MPGDs

F. Sauli, NIM. A386(1997)531

GEM (std, Thick, glass, ...)

Gain
~20
~20
~20
~8000

S. Franchino, 2016
More recent MPGDs

GEM (std, Thick, glass, ...)

F. Sauli, NIM. A386(1997)531

I. Giomataris et al., NIM A 376 (1996)

Micromegas
(bulk, micro bulk, resistive, ..)

S. Franchino, 2016
More recent MPGDs

- **GEM (std, Thick, glass, ...)**
 - F. Sauli, NIM. A386(1997)531
 - Drift cathode, Gain: ~20 for GEM 1, GEM 2, GEM 3, ~8000 for readout PCB

- **Micromegas (bulk, micro bulk, resistive, ..)**
 - I. Giomataris et al., NIM A 376 (1996)

- Ageing: OK (no thin wires)
- Spark protection: multiple amplification stages, resistive electrodes

S. Franchino, 2016
Properties of MPGDs
Properties of MPGDs

• Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers
Properties of MPGDs

• Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers

• Fine patterning realized with PCB photolithography techniques
Properties of MPGDs

• Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers
• Fine patterning realized with PCB photolithography techniques
 • Fine position resolution (< 100 microns)
Properties of MPGDs

- Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers
- Fine patterning realized with PCB photolithography techniques
 - Fine position resolution (< 100 microns)
 - Good timing resolution (< 10 nsec)
Properties of MPGDs

- Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers
- Fine patterning realized with PCB photolithography techniques
 - Fine position resolution (< 100 microns)
 - Good timing resolution (< 10 nsec)
 - High rate capability (> 10^7 counts/mm)
Properties of MPGDs

- Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers
- Fine patterning realized with PCB photolithography techniques
 - Fine position resolution (< 100 microns)
 - Good timing resolution (< 10 nsec)
 - High rate capability (> 10^7 counts/mm)
 - Excellent radiation hardness
Properties of MPGDs

- Gas multiplication and/or readout are performed by “micro patterns” instead of conventional wire chambers
- Fine patterning realized with PCB photolithography techniques
 - Fine position resolution (< 100 microns)
 - Good timing resolution (< 10 nsec)
 - High rate capability (> 10^7 counts/mm)
- Excellent radiation hardness
- Use components that can be mass produced by industry
The μ-RWELL technology
The μ-RWELL technology

The μ-RWELL detector is composed of two elements: the cathode and the μ-RWELL_PCB.
The \(\mu \)-RWELL technology

The \(\mu \)-RWELL detector is composed of two elements: the **cathode** and the \(\mu \)-RWELL_PCB .

![Diagram of the \(\mu \)-RWELL detector with specifications](image)

- **Drift/cathode PCB**
 - Well pitch: 140 \(\mu \)m
 - Well diameter: 70-50 \(\mu \)m
 - Kapton thickness: 50 \(\mu \)m

- **Copper top layer (5\(\mu \)m)**
- **DLC layer (0.1-0.2 \(\mu \)m)**
- **R rigid PCB readout electrode**
- **Well diameter**: 70-50 \(\mu \)m

G. Bencivenni et al., 2015_JINST_10_P02008
The µ-RWELL technology

The µ-RWELL detector is composed of two elements: the cathode and the µ-RWELL_PCB.

The µ-RWELL_PCB is realized by coupling:

- Drift/cathode PCB
- Copper top layer (5µm)
- DLC layer (0.1-0.2 µm)
- R ~10 - 200 Ω/□
- Well pitch: 140 µm
- Well diameter: 70-50 µm
- Kapton thickness: 50 µm
- Gas gap 4-7 mm

G. Bencivenni et al., 2015_JINST_10_P02008
The μ-RWELL detector is composed of two elements: the **cathode** and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by **coupling**:

1. a “suitable WELL patterned kapton foil” as “amplification stage”

Drift/cathode PCB

The μ-RWELL_PCB is composed of:

1. Copper top layer (5µm)
2. DLC layer (0.1-0.2 µm)
3. Rigid PCB readout electrode

Rigid PCB readout electrode

Well pitch: 140 µm
Well diameter: 70-50 µm
Kapton thickness: 50 µm

G. Bencivenni et al., 2015_JINST_10_P02008
The μ-RWELL technology

The μ-RWELL detector is composed of two elements: the **cathode** and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by coupling:

1. a “suitable WELL patterned kapton foil” as “amplification stage”
2. a “resistive stage” for the discharge suppression & current evacuation

G. Bencivenni et al., 2015_JINST_10_P02008
The μ-RWELL technology

The μ-RWELL detector is composed of two elements: the cathode and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by coupling:

1. a “suitable WELL patterned kapton foil” as “amplification stage”

2. a “resistive stage” for the discharge suppression & current evacuation

 i. “Low particle rate” (LR) ~ 100 kHz/cm2:
 - single resistive layer \rightarrow surface resistivity ~ 100 MΩ/☐ (CMS-phase2 upgrade - SHIP)

G. Bencivenni et al., 2015_JINST_10_P02008
The μ-RWELL technology

The μ-RWELL detector is composed of two elements: the **cathode** and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by coupling:

1. a **“suitable WELL patterned kapton foil”** as “amplification stage”
2. a **“resistive stage”** for the discharge suppression & current evacuation
 i. **“Low particle rate”** (LR) ~ 100 kHz/cm2:
 single resistive layer \rightarrow surface resistivity ~ 100 MΩ/☐ (CMS-phase2 upgrade - SHIP)
 ii. **“High particle rate”** (HR) > 1 MHz/cm2:
 more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF & LHCb-muon upgrade)

G. Bencivenni et al., 2015_JINST_10_P02008
The μ-RWELL detector is composed of two elements: the cathode and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by coupling:

1. a “suitable WELL patterned kapton foil” as “amplification stage”
2. a “resistive stage” for the discharge suppression & current evacuation
 i. “Low particle rate” (LR) ~ 100 kHz/cm2: single resistive layer \rightarrow surface resistivity ~100 MΩ/☐ (CMS-phase2 upgrade - SHIP)
 ii. “High particle rate” (HR) > 1 MHz/cm2: more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF & LHCb-muon upgrade)
3. a standard readout PCB

Drift/cathode PCB

- Gas gap 4-7 mm
- Copper top layer (5µm)
- DLC layer (0.1-0.2 µm)
- R ~10 -200 MΩ/☐
- Well pitch: 140 µm
- Well diameter: 70-50 µm
- Kapton thickness: 50 µm

G. Bencivenni et al., 2015_JINST_10_P02008
The μ-RWELL technology

The μ-RWELL detector is composed of two elements: the cathode and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by coupling:

1. a “suitable WELL patterned kapton foil” as amplification stage
2. a “resistive stage” for the discharge suppression & current evacuation
 i. “Low particle rate” (LR) \(\sim 100 \text{ kHz/cm}^2 \):
 single resistive layer \(\rightarrow \) surface resistivity \(\sim 100 \text{ MΩ/□} \) (CMS-phase2 upgrade - SHIP)
 ii. “High particle rate” (HR) \(> 1 \text{ MHz/cm}^2 \):
 more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF & LHCb-muon upgrade)
3. a standard readout PCB

Collaboration of INFN, CERN, Eltos
The μ-RWELL detector is composed of two elements: the cathode and the μ-RWELL_PCB.

The μ-RWELL_PCB is realized by coupling:

1. a “suitable WELL patterned kapton foil as “amplification stage”

2. a “resistive stage” for the discharge suppression & current evacuation
 i. “Low particle rate” (LR) ~ 100 kHz/cm²: single resistive layer → surface resistivity ~100 MΩ/☐ (CMS-phase2 upgrade - SHIP)
 ii. “High particle rate” (HR) > 1 MHz/cm²: more sophisticated resistive scheme must be implemented (MPDG_NEXT- LNF & LHCb-muon upgrade)

3. a standard readout PCB

Collaboration of INFN, CERN, Eltos

Major advantages wrt. GEM
- 1 kapton foil instead of 3
- No stretching
- Spark safe
μ-RWELL References

Low rate version:

High rate version:
- G. Bencivenni et al., “Recent results of μ-RWELL detector”, PoS(MPGD2017)019
- G. Bencivenni et al., “The μ-RWELL technology: status and perspective”, to be submitted to PoS

For more informations on the μ-RWELL technology please follow M. Poli Lener’s poster “The Micro-Resistive-WELL (μ-RWELL) detector for large area Muon systems at future circular colliders”
μ-RWELL features
µ-RWELL features

• µ-RWELL guiding principles
 • Retain the same excellent performances of GEM and MM
 • Improve the resistance to sparks
 • Simplify the components construction and final assembly
μ-RWELL features

- **μ-RWELL guiding principles**
 - Retain the same excellent performances of GEM and MM
 - Improve the resistance to sparks
 - Simplify the components construction and final assembly

- **Simpler construction**
 - Only 1 kapton foil instead of 3
 - Single amplification layer
 - Simpler etching of the kapton foil
μ-RWELL features

• μ-RWELL guiding principles
 • Retain the same excellent performances of GEM and MM
 • Improve the resistance to sparks
 • Simplify the components construction and final assembly

• Simpler construction
 • Only 1 kapton foil instead of 3
 • Single amplification layer
 • Simpler etching of the kapton foil

• More robust
 • Resistive DLC layer makes the detector very spark safe
μ-RWELL features

• μ-RWELL guiding principles
 • Retain the same excellent performances of GEM and MM
 • Improve the resistance to sparks
 • Simplify the components construction and final assembly

• Simpler construction
 • Only 1 kapton foil instead of 3
 • Single amplification layer
 • Simpler etching of the kapton foil

• More robust
 • Resistive DLC layer makes the detector very spark safe

• Simpler final assembly
 • Kapton foil glued to PCB: no stretching needed
FCC 2018 week - A Muon detector based on the μ-RWELL technology - Paolo Giacomelli

μ-RWELL features

- μ-RWELL guiding principles
 - Retain the same excellent performances of GEM and MM
 - Improve the resistance to sparks
 - Simplify the components construction and final assembly

- Simpler construction
 - Only 1 kapton foil instead of 3
 - Single amplification layer
 - Simpler etching of the kapton foil

- More robust
 - Resistive DLC layer makes the detector very spark safe

- Simpler final assembly
 - Kapton foil glued to PCB: no stretching needed

- Less components, simpler construction \rightarrow significant cost reduction
The High Rate scheme (LHCb)

1. Copper layer 5 µm
 Kapton layer 50 µm
 DLC layer: 0.1 – 0.2 µm
 (10-200 MΩ/□)

2. 2nd resistive kapton layer with ~ 1/cm²
 “through vias” density
 DLC-coated kapton base material

3. 2nd resistive kapton layer
 pad/strips readout on standard PCB

4. DLC-coated base material after copper and kapton chemical etching
 (WELL amplification stage)

This resistive scheme allows to reach a detector rate capability > 1 MHz/cm² with a negligible gain drop (see M. Poli Lener’s poster: «The micro-Resistive-WELL (µ-RWELL) detector for large area Muon system at Future Circular Colliders»

- G.Bencivenni et al., PoS(MPGD2017)019
- G.Bencivenni et al., to be submitted to Pos
CMS GE1/1 \(\mu\)-RWELL prototype at H8 test beam
CMS GE1/1 μ-RWELL prototype at H8 test beam

Ar/CO$_2$/CF$_4$
45/15/40

VFAT FEE
CMS GE1/1 μ-RWELL prototype at H8 test beam

Efficiency

- **Ar/CO$_2$/CF$_4$**
 - 45/15/40

- VFAT FEE

FCC 2018 week - A Muon detector based on the μ-RWELL technology - Paolo Giacomelli
CMS GE1/1 μ-RWELL prototype at H8 test beam

Efficiency

- ε (%)
- 97%

Time resolution

- σ_t (ns)
- ~ 6 ns

limited by VFAT saturation

Ar/CO$_2$/CF$_4$

VFAT FEE

45/15/40
CMS GE1/1 μ-RWELL: GIF++ ageing test

1) GE1/1 μ-RWELL (ArCO$_2$)

2) “high rate” μ-RWELL (ArCO$_2$CF$_4$) 10cmx10cm

3) reference μ-RWELL (ArCO$_2$) 10cmx10cm

μRWELL prototypes exposed inside the GIF++
CMS GE1/1 μ-RWELL: GIF++ ageing test

1) GE1/1 μ-RWELL (ArCO$_2$)

2) "high rate" μ-RWELL
 (ArCO$_2$CF$_4$) 10cmx10cm

3) reference μ-RWELL
 (ArCO$_2$) 10cmx10cm

μRWELL prototypes exposed inside the GIF++
CMS GE1/1 \(\mu \)-RWELL: GIF++ ageing test

1) GE1/1 \(\mu \)-RWELL (ArCO\(_2\))
2) “high rate” \(\mu \)-RWELL (ArCO\(_2\)CF\(_4\)) 10cmx10cm
3) reference \(\mu \)-RWELL (ArCO\(_2\)) 10cmx10cm

\(\mu \)RWELL prototypes exposed inside the GIF++

GE1/1 has accumulated a dose of \(~32\) mC/cm\(^2\) (more than 10 times the dose after 10 years of HL-LHC)
CMS GE2/1 sector μ-RWELL prototype
CMS GE2/1 sector μ-RWELL prototype

M4 μ-RWELL
CMS GE2/1 sector μ-RWELL prototype

M4 μ-RWELL prototype is a trapezoid of ~55-60x50 cm2

Largest μ-RWELL ever built and operated!
CMS GE2/1 sector μ-RWELL prototype

GE2/1 20° sector with 2 M4 μRWells
(2 m height, 1.2 m base)

M4 μ-RWELL prototype is a trapezoid of ~55-60x50 cm²
Largest μ-RWELL ever built and operated!

M4 μ-RWELL
H4 test beam with 150 GeV muons:
- Voltage scan (amplification scan)
- Uniformity scan across the surface of the detector at 530 V (~12000 gain, still to be conditioned)

The excellent results obtained demonstrate the great collaboration between INFN-Eltos and Rui de Oliveira’s lab.

GE2/1 20° sector with 2 M4 µRWells
(2 m height, 1.2 m base)

M4 µ-RWELL prototype is a trapezoid of ~55-60x50 cm²
Largest µ-RWELL ever built and operated!
CMS GE2/1 sector μ-RWELL: HV scan

M4 right side:
- Drift Field = 3.0 kV/cm
- $V_{\mu\text{-RWELL}}$ = scan

Efficiency = \[\frac{\# \text{ hits (Tracker 1 & Tracker 2 & M4 right)}}{\# \text{ hits (Tracker 1 & Tracker 2)}} \]

![Graph showing efficiency vs. $V_{\mu\text{-RWELL}}$](image)

- Muon beam
- Ar/CO$_2$ 70/30
CMS M4 \(\mu\)-RWELL: homogeneity

Efficiency = \(\frac{\# \text{ hits (Tracker 1 & Tracker 2 & M4 right)}}{\# \text{ hits (Tracker 1 & Tracker 2)}}\)

M4 right side:
- Drift Field = 3.0 kV/cm
- \(V_{\mu\text{-RWELL}} = 530\) V

Homogeneity at \(HV=530\) V, TOP RIGHT M4
- Efficiency = \(\varepsilon \approx 98\%\)

Homogeneity at \(HV=530\) V, BOTTOM RIGHT M4
- Efficiency = \(\varepsilon \approx 98\%\)

Beam on the edge of the detector
NOT inefficiency!!
CMS GE2/1 sector μ-RWELL prototype

M4 right side:
- Drift Field = 3.0 kV/cm
- V_{μ}-RWELL = 530 V

Efficiency = \frac{\# \text{ hits (Tracker 1 & Tracker 2 & M4 right)}}{\# \text{ hits (Tracker 1 & Tracker 2)}}

Muon beam

![Graph showing the efficiency distribution across M4 chamber.

Distance from the bottom of M4 (cm)
Distance from the center of M4 (cm)
μ-RWELL High Rate version

When: 5 - 19 July 2017

2 GEM Trackers (10x10 cm2) RD51 setup

2 μ-RWELLs (10x10 cm2) HR scheme

1 μ-RWELL (CMS-GE2/1 M4 shape) LR scheme
μ-RWELL High Rate version

Tracker GEMs
- Gas mixture: Ar/CO$_2$ 70/30

2 GEM Trackers
- 10x10 cm2
- 400 μm strip-pitch
- X-Y strip readout

HR μ-RWELLs
- Gas mixture: Ar/CO$_2$/CF$_4$ 45/15/40

HR μ-RWELL prototypes
- 10x10 cm2
- 6x8 mm2 pad readout

All detectors readout:
- APV 25
- (Charge Centroid analysis)
\(\mu\)-RWELL High Rate version

- Drift Field = 2.5 kV/cm
- \(V_{\mu\text{-RWELL}} = \text{scan}\)

\[
\text{Efficiency} = \frac{\# \text{ hits (Tracker 1 & Tracker 2 & HR proto)}}{\# \text{ hits (Tracker 1 & Tracker 2)}}
\]

Ar/CO\(_2\)/CF\(_4\) 45/15/40

Courtesy of LNF-DDG
μ-RWELL High Rate: rate capability

Pion beam

Rate = beam scint. counts/4.2 s/(σxσy*2.53^2)

Beam profile: GEM trackers

Ar/CO\textsubscript{2}/CF\textsubscript{4} 45/15/40

Courtesy of LNF-DDG
Summary of results with μ-RWELLs
Summary of results with μ-RWELLs

- GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, $\sigma_t < 6$ ns (about 4.5 ns obtained)
 - Fully efficient for a gain of >3000
 - Tested with a rate up to ~ 35 kHz/cm2 (only limited by beam rate)
Summary of results with μ-RWELLs

- GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, $\sigma_t < 6$ ns (about 4.5 ns obtained)
 - Fully efficient for a gain of >3000
 - Tested with a rate up to \sim35 kHz/cm2 (only limited by beam rate)
- GIF++ ageing (radiation tolerance) test
 - Tested with global irradiation up to 100 kHz/cm2 for CMS prototype
 - Gain stability up to 20000
 - No dark current, no discharges
 - $Q_{\text{int}} >$ a century of GE2/1 at HL-LHC at the end of the test
 - Up to 01/04/18 $Q_{\text{int}} \sim 32$ mC/cm2
Summary of results with \(\mu\)-RWELLs

- GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, \(\sigma_t < 6\) ns (about 4.5 ns obtained)
 - Fully efficient for a gain of >3000
 - Tested with a rate up to \(\sim 35\) kHz/cm\(^2\) (only limited by beam rate)
- GIF++ ageing (radiation tolerance) test
 - Tested with global irradiation up to 100 kHz/cm\(^2\) for CMS prototype
 - Gain stability up to 20000
 - No dark current, no discharges
 - \(Q_{\text{int}} > \) a century of GE2/1 at HL-LHC at the end of the test
 - Up to 01/04/18 \(Q_{\text{int}} \sim 32\) mC/cm\(^2\)
- GE2/1 sector mechanical mock-up built
Summary of results with μ-RWELLs

- GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, $\sigma_t < 6$ ns (about 4.5 ns obtained)
 - Fully efficient for a gain of > 3000
 - Tested with a rate up to ~ 35 kHz/cm2 (only limited by beam rate)

- GIF++ ageing (radiation tolerance) test
 - Tested with global irradiation up to 100 kHz/cm2 for CMS prototype
 - Gain stability up to 20000
 - No dark current, no discharges
 - $Q_{\text{int}} >$ a century of GE2/1 at HL-LHC at the end of the test
 - Up to 01/04/18 $Q_{\text{int}} \sim 32$ mC/cm2

- GE2/1 sector mechanical mock-up built

- Technology Transfer with the Eltos company
Summary of results with μ-RWELLs

- GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, $\sigma_t < 6$ ns (about 4.5 ns obtained)
 - Fully efficient for a gain of >3000
 - Tested with a rate up to ~ 35 kHz/cm2 (only limited by beam rate)
- GIF++ ageing (radiation tolerance) test
 - Tested with global irradiation up to 100 kHz/cm2 for CMS prototype
 - Gain stability up to 20000
 - No dark current, no discharges
 - $Q_{\text{int}} >$ a century of GE2/1 at HL-LHC at the end of the test
 - Up to 01/04/18 $Q_{\text{int}} \sim 32$ mC/cm2
- GE2/1 sector mechanical mock-up built
- Technology Transfer with the Eltos company
- Large 50-60x50 cm2 μ-RWELL M4 modules built
 - Exposed at the H4 test beam in July 2017
 - Excellent uniformity! Efficiency between 98-99% over the whole surface.
Summary of results with μ-RWELLs

- GE1/1 prototype at H8 test beam in 2016
 - Very good time resolution, $\sigma_t < 6$ ns (about 4.5 ns obtained)
 - Fully efficient for a gain of >3000
 - Tested with a rate up to ~ 35 kHz/cm2 (only limited by beam rate)
- GIF++ ageing (radiation tolerance) test
 - Tested with global irradiation up to 100 kHz/cm2 for CMS prototype
 - Gain stability up to 20000
 - No dark current, no discharges
 - $Q_{\text{int}} >$ a century of GE2/1 at HL-LHC at the end of the test
 - Up to 01/04/18 $Q_{\text{int}} \sim 32$ mC/cm2
- GE2/1 sector mechanical mock-up built
- Technology Transfer with the Eltos company
- Large 50-60x50 cm2 μ-RWELL M4 modules built
 - Exposed at the H4 test beam in July 2017
 - Excellent uniformity! Efficiency between 98-99% over the whole surface.
- HR μ-RWELL tested up to rates > 1 MHz/cm2
Conclusions
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems.
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems
- A large mosaic of \sim50x50 cm2 μ-RWELL detectors is probably the best solution from the industrial point of view
Conclusions

• MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems.

• A large mosaic of \sim50x50 cm2 μ-RWELL detectors is probably the best solution from the industrial point of view.

• An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with μ-RWELL detectors is an attractive opportunity.
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems
- A large mosaic of \sim50x50 cm2 μ-RWELL detectors is probably the best solution from the industrial point of view
- An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with μ-RWELL detectors is an attractive opportunity
- The IDEA detector concept for FCC-ee implements μ-RWELL
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems.

- A large mosaic of $\sim 50\times 50$ cm2 μ-RWELL detectors is probably the best solution from the industrial point of view.

- An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with μ-RWELL detectors is an attractive opportunity.

- The IDEA detector concept for FCC-ee implements μ-RWELL.
 - This system can provide a time resolution of the order of 5 ns and a space resolution of <200 μm.
Conclusions

• MPGDs, and in particular the \(\mu \)-RWELL technology, are an excellent option for realising future large Muon detection systems.

• A large mosaic of \(\sim 50 \times 50 \) cm\(^2\) \(\mu \)-RWELL detectors is probably the best solution from the industrial point of view.

• An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with \(\mu \)-RWELL detectors is an attractive opportunity.

• The IDEA detector concept for FCC-ee implements \(\mu \)-RWELL.
 • This system can provide a time resolution of the order of 5 ns and a space resolution of \(<200 \ \mu m\).
 • Stadalone muon reconstruction.
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems
- A large mosaic of \sim50x50 cm2 μ-RWELL detectors is probably the best solution from the industrial point of view
- An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with μ-RWELL detectors is an attractive opportunity
- The IDEA detector concept for FCC-ee implements μ-RWELL
 - This system can provide a time resolution of the order of 5 ns and a space resolution of $<200 \ \mu$m
 - Standalone muon reconstruction
 - Trace back the muon stubs to the tracker tracks
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems
- A large mosaic of $\sim 50 \times 50$ cm2 μ-RWELL detectors is probably the best solution from the industrial point of view
- An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with μ-RWELL detectors is an attractive opportunity
- The IDEA detector concept for FCC-ee implements μ-RWELL
 - This system can provide a time resolution of the order of 5 ns and a space resolution of $<200 \ \mu$m
 - Stadalone muon reconstruction
 - Trace back the muon stubs to the tracker tracks
 - Provide excellent momentum resolution and a robust muon trigger
Conclusions

- MPGDs, and in particular the μ-RWELL technology, are an excellent option for realising future large Muon detection systems.
- A large mosaic of \sim50x50 cm2 μ-RWELL detectors is probably the best solution from the industrial point of view.
- An upgrade of the muon system for the CLD detector of FCC-ee, substituting the RPCs with μ-RWELL detectors is an attractive opportunity.
- The IDEA detector concept for FCC-ee implements μ-RWELL:
 - This system can provide a time resolution of the order of 5 ns and a space resolution of <200 μm.
 - Stadalone muon reconstruction.
 - Trace back the muon stubs to the tracker tracks.
 - Provide excellent momentum resolution and a robust muon trigger.
- μ-RWELL technology is also suitable for the muon systems of detectors at future hadron colliders, like FCC-hh.
Backup
Muon detectors for FCC-ee
Muon detectors for FCC-ee

There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) model and the IDEA concept.
Muon detectors for FCC-ee

There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) model and the IDEA concept.

In the CLD (CLIC-inspired detector) the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.
There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) model and the IDEA concept.

In the CLD (CLIC-inspired detector) the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.
Muon detectors for FCC-ee

There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) model and the IDEA concept.

In the CLD (CLIC-inspired detector) the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.

Also this muon detector could be improved by adopting finer space resolution MPGDs.
There are two detector concepts for FCC-ee: the CLD (CLIC-inspired detector) model and the IDEA concept.

In the CLD (CLIC-inspired detector) the muon system is made of 6 muon stations interleaved in the iron return yoke, and every muon station is made of RPCs.

Also this muon detector could be improved by adopting finer space resolution MPGDs.

There is also the IDEA concept, discussed in the previous slide.

- Proposed for Phase II upgrade (~2023)
- Need high granularity ~ 0.1mm
- BG rate > 100kHz/cm² (HIP, gamma)
- Rate tolerant, Pixel type detector needed

\(\mu \)-PIC with resistive Diamond-LC electrodes:

\(\mu \)-PIC with resistive Diamond-LC electrodes:

Spark rate reduction using resistive \(\mu \)-PIC for fast neutron

\(\mu \)-RWell Detector:

- Very reliable
- Almost completely discharge-free
- Adequate for high particle rates \(O(1\text{MHz/cm}^2) \) thanks to the segmented-resistive-layer
- Suitable for large area applications (1.8 x 1.2 m² proto was tested in 2017)
Muon detector for FCC-ee

CLIC Detector requirements from physics

- **momentum resolution**
 - Higgs recoil mass, Higgs coupling to muons, BSM (smuon and neutralino masses)
 - for high p_T tracks

\[\sigma_{p_T}/p_T^2 \simeq 2 \times 10^{-5} \text{GeV}^{-1} \]

Example: $H \rightarrow \mu\mu$ @ 3 TeV

- **jet energy resolution**
 - W/Z di-jet mass separation
 - jet energy up to 1 TeV

\[\sigma_E/E \simeq 3.5\% \]

- **impact parameter resolution**
 - c/b tagging, Higgs BR

\[\sigma_{d_0} = a^2 + \frac{b^2}{p^2 \sin^3 \theta} \]
\[a \lesssim 5\mu m \quad b \lesssim 15\mu m \text{GeV} \]

- **lepton ID efficiency** > 95%
 - over full energy range

- **forward coverage**
 - electron and photon tagging (e.g. dark matter studies)
GEM Phase 2 Forward muon system

- **Muon tagger** at highest η ($\eta<2.8$)
- 36 20° super-module wedge each consists 6 layers of chambers.
- Numb. of chambers: 216
- Installation: July 2024

- **ME0**
- $1.6<|\eta|<2.4$
- 36 20° super-chambers
- Total number of chambers: 72
- Installation: YETS 2022

- **GE2/1**
- L1 trigger rate reduction, enhance via redundancy, reconstruction
- ME0 detector extends coverage and performance of muon Id and trigger beyond $\eta=2.4$ up to $\eta<2.8$
GE1/1 μ-RWELL: test at H8 (nov. 2016)

1. Construction & test of the first 1.2x0.5m2 (GE1/1) μ-RWELL 2016
2. Mechanical study and mock-up of 1.8x1.2 m2 (GE2/1) μ-RWELL 2016-2017
3. Construction of the first 1.8x1.2m2 (GE2/1) μ-RWELL (only M4 active) 01-09/2017

GE1/1 μ-RWELL prototype

H8 Beam Area (18th Oct. 9th Nov 2016)
Muon/Pion beam: 150 GeV/c

N° 2 LHCb μ-RWELL protos
10x10 cm2
40-35 MΩ/□
400 μm pitch strips

N° 1 CMS μ-RWELL proto
100x50 cm2
70 MΩ/□
800 μm pitch strips
GE2/1 μ-RWELL: GIF++ ageing test

Context:
CMS Muon System, R&D Phase II Upgrade with MPGD: μ-RWELL

Motivations:
Need to qualify the behaviour and performance of μ-RWELL detectors in a harsh radiation environment.

Duration of the test:
will stay at least 6 months. GE2/1 HL-LHC dose achievable in a short time (few weeks)

1) GE1/1 μ-RWELL (ArCO$_2$)
2) “high rate” μ-RWELL (ArCO$_2$CF$_4$) 10cmx10cm
3) reference μ-RWELL (ArCO$_2$) 5cmx5cm
Highest spikes are of the order of 1-2 μA. This further demonstrates the intrinsic robustness of μ-RWELL.
GE2/1 alternative option: μRWELL

We have built a full scale GE2/1 sector with 2 M4 μ-RWELL operating detectors.

1) M4 left and right are mirrored.
2) Size: 606.5 x 498.5 x 1 mm
3) Strip layout inspired to the GE2/1 GEM option
4) Final drawing finished (Gatta-LNF)
5) DLCed foils ready (Ochi-Kobe)
6) Preliminary tests at ELTOS done
7) PCB production at Eltos done, then glueing with kapton foil

Modules fit within 74 mm splicing → dead space less than 0.01%
GE2/1 sector equipped with two active M4 μRWELL

Brought to H4 test beam on July 12th