Beam-beam simulations with beamstrahlung for FCC-ee

Dima El Khechen
CERN, Meyrin Switzerland

FCC week 2018 Amsterdam, 11 April 2018

Acknowledgments:

Kazuhito Ohmi, Katsunobu Oide, Dmitry Shatilov, Demin Zhou, F. Zimmermann

Outline

- → Dynamic effects: Analytical estimations / simulations
- → Beam-beam simulations with beamstrahlung in SAD
- 1) @ 182.5 GeV
- 2) @ 45.6 GeV
- → Conclusions and perspectives

Dynamic Effects -I

- → Dynamic effects: Change of the Twiss parameters due to the beam-beam quadrupolar focusing
- These effects are enhanced by running at half or full integer resonances
- Two dynamic effects: dynamic beta and dynamic emittance
- → Dynamic beta:

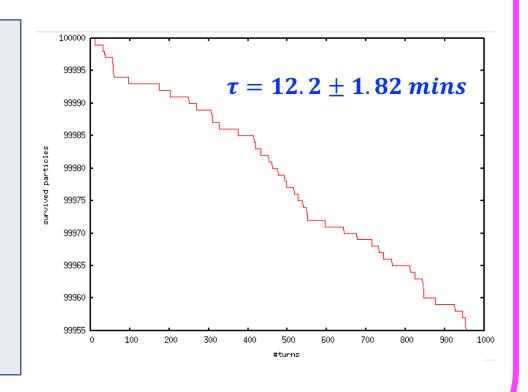
$$\begin{pmatrix} \cos \mu & \beta \sin \mu \\ -\frac{1}{\beta} \sin \mu & \cos \mu \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} \cos \mu_0 & \beta_0 \sin \mu_0 \\ -\frac{1}{\beta_0} \sin \mu_0 & \cos \mu_0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix}$$
• $\frac{1}{f_{x,y}}$ is the beam-beam interaction strength

- The beam-beam parameter $\xi_{x,y} = \frac{\beta_{0(x,y)}}{4\pi f_{x,y}}$

•
$$m{eta}_{x,y} = rac{m{eta}_{0(x,y)}}{\sqrt{1-\left(2\pi\xi_{x,y}
ight)^2+4\pi\xi_{x,y}\mathrm{cot}(\mu_{0(x,y)})}}$$
 ; where $\mu_{0(x,y)} = 2\pi
u_{0(x,y)}$

Dynamic Effects -II

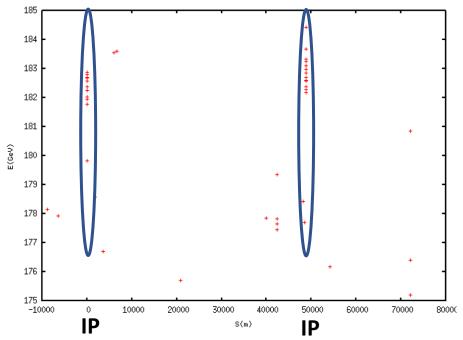
- → Analytical estimations predict :
- 50% reduction in β_{χ} and 44% reduction in β_{V} @ Top energies
- 34% reduction in β_{ν} @ Z energy
- → Above estimations were confirmed by a thin quadrupole insertion at both IPs in both lattices
- > Vertical misalignments of sextupoles were introduced to create the x-y coupling overall the ring
- → Dynamic emittance [1] could also be predicted in presence of radiation and vertical emittance
- \rightarrow Predictions: 38% enhancement of ϵ_x and 43% enhancement of ϵ_y @ Top



[1] "Self-consistent b functions and emittances of round colliding beams", A. V. Otboyev and E. A. Perevedentsev, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 2, 104401

Beamstrahlung simulations I

- → Weak strong beam-beam simulations were performed by the SAD [2] version of BBWS [3]
- → Beam-beam elements were inserted at both IPs with beamstrahlung flag ON
- → The crossing angle is simulated, the crab waist is employed for the weak beam
- → The Strong beam is not crab waisted
- @ 182.5 GeV: (first lattice version)
- \rightarrow Weak beam population N_p= 10⁵
- → Physical apertures are inserted including synchrotron masks in the interaction region
- → Vertical misalignments of sextupoles
- → Tracking over 1000 turns
- → Update strong beam parameters every one damping period (50 turns)



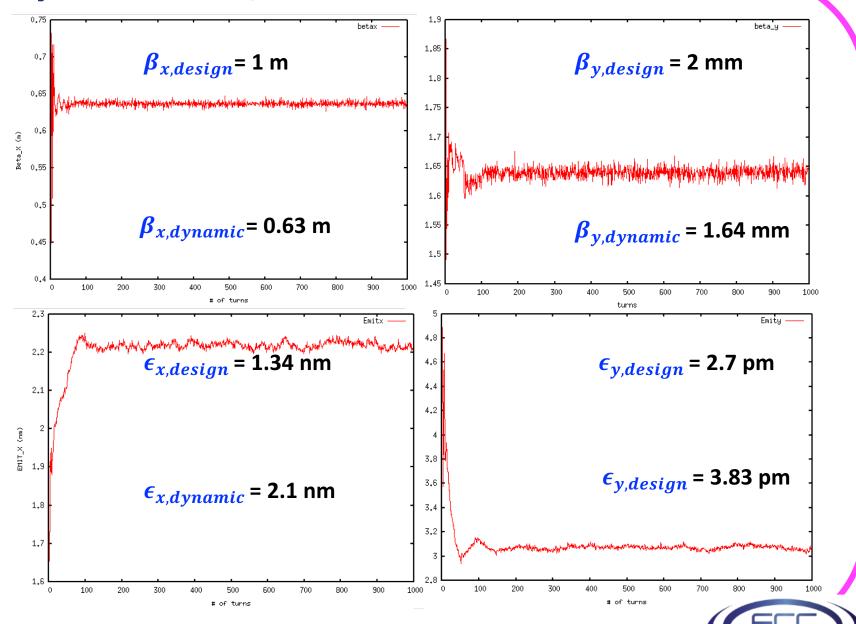
- [2] http://acc-physics.kek.jp/SAD/SADHelp.html
- [3] K. Ohmi, "Beam-Beam Effects in CEPC and TLEP," Proc. HF2014, Beijing (2014).

Beamstrahlung simulations II

0.05 0.04 0.03 0.02 -0.01-0.02 -0.03 -0.04 -0.05 -0.04 -0.03 -0.02

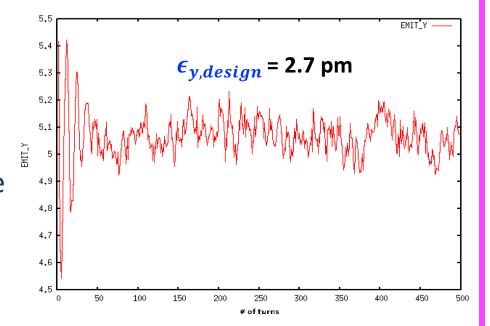
Energy of lost particles as a function of their loss position in the ring

Transverse amplitudes of the lost particles


- → Loss map was constructed (need higher statistics)
- \rightarrow Losses are mainly concentrated around the IP ($\pm 5 m$) in the vertical plane
- → Collimators are needed to protect the IR from the above losses

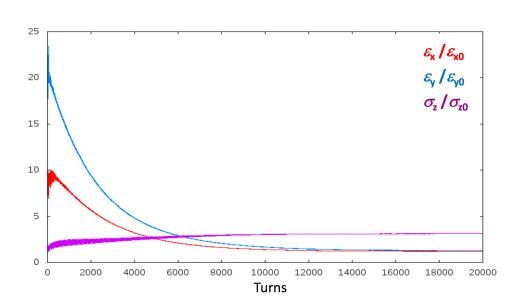
→ Dynamic effects could be observed in the non-linear beam-beam simulations

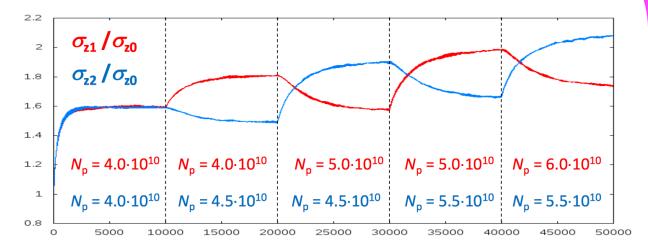
- → Results are different from linear beam-beam simulations
- → How do these results appear without beambeam element insertion??

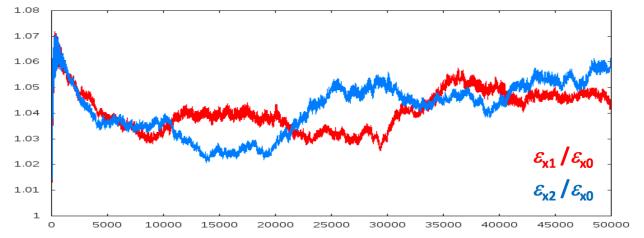

Dynamic Beta/Emittance

No beam-beam

- > Remove the beam beam element and track in the lattice in the presence of sextupole misalignments
- → Vertical emittance is now almost twice the design value
- → Reason: Residual coupling/dispersion at FRF & IP due to sextupole misalignments
- → Correction of residual coupling/dispersion is needed

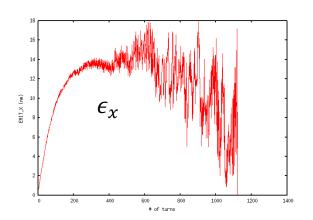


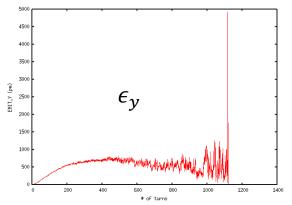

Beamstrahlung at Z (I)

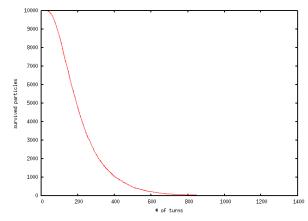

D. Shatilov

- → Due to strong beam-beam at Z, beam sizes at the IP will blow up
- → Bootstrapping will be considered where injection will be done on stages

Bootstrapping

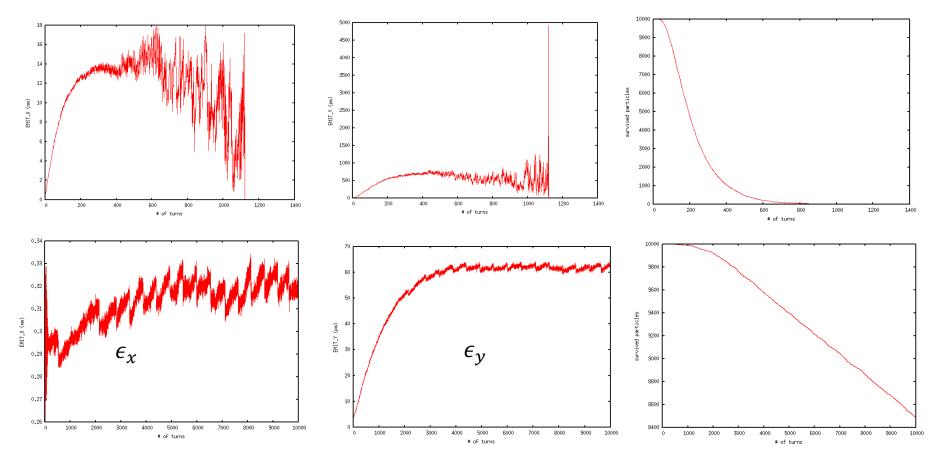






Beamstrahlung at Z (II)

- → Represent the bootstrapping by simulating beam parameters after beamstrahlung and bootstrapping
- \rightarrow 20 slices : Large beam-beam effect \rightarrow large emittance blow-up \rightarrow Beam loss

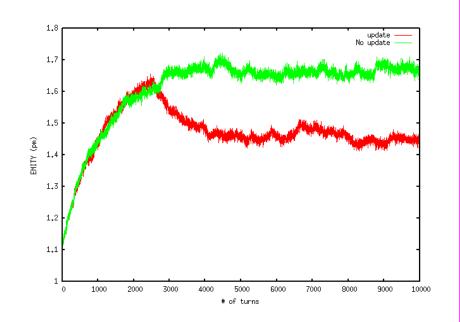


- → The bunch length is around 30 times larger than the interaction region
- → Number of slices should be high to correctly represent the beam-beam interaction

Beamstrahlung at Z (III)

20 slices

500 slices


- → Slicing of the strong beam has a big effect on the blowup
- → But the blowup is still large and causing a large beam loss
- → Is it again the residual dispersions and xy couplings?

No misalignments

- → Remove the vertical sextupole misalignments and instead do artificial excitation/damping of the weak beam
- → Blow-up decreases significantly and no beam losses over 10000 turns
- → The blow-up thus is not due to the beam-beam itself but due to the residual dispersions and x-y coupling resulting from the vertical sextupole mislignments
- → The residuals are higher at Z due to the higher x-y coupling (Higher RMS of sextupole misalignments)

Correction Methods

- → Local corrections were considered for our studies (IP and FRF)
- → Two methods are currently being considered:
- 1) Optimize the skew quadrupole components of the 2N sextupoles upstream/downstream of the to-be-corrected location to suppress dispersions/couplings at the latter
- 2) Set randomly the skew quadrupole and skew sextupole components of all the sextupoles to create the needed xy coupling and to guarantee a negligible dispersion/coupling at the IPs and FRF
- 3) Not to forget the anomalous equilibrium emittance due to the residuals of chromaticity corrections [4]
- → Work is currently in progress
- → Error and correction studies overall the ring were carried by S. Aumon (Presentations by T. Tydecks and T. Charles)

Conclusions

- → Dynamic effects has been analytically estimated and cross checked with a thin quadrupole insertion at both IPs for Top and Z energies
- → Beamstrahlung lifetime and loss map were simulated with a multi-turn tracking simulation
- \rightarrow Losses were mainly concentrated in the IR at $\pm 5 m$ from the IP
- → Collimators are necessary to protect the IR from losses from Beamstrahlung
- → Residual dispersions/x-y couplings due to vertical sextupole misalignments create a vertical emittance blow-up at IP that need to be corrected

Perspectives

- → Analytical calculations of the dynamic horizontal emittance using [1] to compare to simulations
- > Further continuation of the correction studies for the residual dispersion/coupling
- → After understanding the above, go for collimation studies (position, aperture and material)
- → With Ohmi san, try to do some beam-beam studies during the SuperKEKB commissioning in the next few months if possible

