

CHARGED HIGGS BOSON ANALYSIS AT FCC-HH

Ilkay Turk Cakir (GU)*

*Collaboration with O.Cakir (AU), H.Denizli (AIBU), A.Senol (AIBU), A.Yilmaz (GU)

FCC Week 2018, Amsterdam, 11 April 2018

Outline

- Signal process
- Objects in final state
- Signal and background samples with FCCSW
- Cross sections and event selection
- Kinematic distributions and cut flows
- Reconstruction of invariant masses
- Statistical significance
- Conclusions

Signal Process

We study charged Higgs boson at FCC-hh

Generation of signal events:

- Production p p→t H⁻+X
- Decay mode tH⁻→tt⁻b→W⁺W⁻bbb

\rightarrow f₁f₂'f₃f₄'bbb

(decays and hadronization within Pythia8)

Pythia8

Parameters: m_H in the range [500 – 2000]
 GeV; tan(beta)=10; cos(beta-alpha) = 0.

• Signal:

 Interested channel: 3bjet + 2j + 1lepton + MET (where W(1)->Iv, W(2)->2j) - single lepton channel

Main diagrams for subprocess **bg** -> **th**-→**tt**~**b**

Objects in Final State

FCCSW and Samples

• FCCSW

- Signal events are generated with Pythia8 within FCCSW. Background LHE events are generated with MG5 for further hadronization and showering through Pythia8 within FCCSW
- Fast detector simulation is performed with **Delphes** for parametric card FCChh.tcl
- Event selection is applied on those samples with Heppy.
 Flat ntuples are produced with observables of interest and analyzed with Heppy
- Gen-level and Reco-level plots are produced with python scripts – Heppy writes a tree.root file – Root
- Signal samples
 - pp→tH⁻→ttb→WWbbb (mass = 500, 1000, 2000 GeV)
- Background samples
 - * pp→tt

* pp→ttb

Analysis steps

Event

generation

(Pythia8)

Detector

simulation

(Delphes)

Event

selection

(Heppy)

Ntuple, plots

(gen-level,

reco-level)

Cross Sections

Signal cross sections (Pythia8 with generator level defaults), parameters: $tan\beta$, $cos(\beta-\alpha)=0$.

Cross sections (pb)	tan β =1	tan β =7	tanβ=10	tanβ=30
т _{н-} =500 GeV	54.950	1.837	2,027	13.440
m _{H-} =1000 GeV	8.129	0.2728	0.2981	1.934
m _{H-} =2000 GeV	0.7634	0.02558	0.02795	0.1778

Background cross section (MG5 with generator level defaults).

Background	Cross section (pb)	EvntW (L _{int} =1 ab ⁻¹)
pp→tt	2.607x10 ⁴	2.607x10 ¹⁰
pp→ttj	4.037x10 ⁴	4.037x10 ¹⁰
pp→ttb	4.906x10 ²	4.906x10 ⁸

Event Selection

Event selection and signal reconstruction

Events with the presence of (# objects)

- at least 5 jets (Njets≥5) and at least 2 bjets (Nb≥2)
- one muon or electron
- significant MET

 focus: 2j+3bj+1I+MET or ≥5j+1I+MET

 Events for a reconstructed top (invariant mass of *lvb*) by combining the reconstructed W boson (invariant mass of lepton and neutrino or two jets) and bjet candidate.

$_{\odot}$ Further steps

- isolation criteria for electron or muon
- rejection of events with additional muon or electron candidates
- removal of electrons or muons if they are separated from the nearest jet by $\Delta R{<}0.4$

Cut-flow Signal and Background

Signal-s500							
Counter cut_flow :							
All events	10000	1.00	1.0000				
At least 5 jets	9766	0.98	0.9766				
At least 2 b-jet	8713	0.89	0.8713				
Exactly 1 lepton	1977	0.23	0.1977				
MET > 20GeV	1852	0.94	0.1852				
Signal-s1000							
Counter cut flow :							
All events	10000	1.00	1.0000				
At least 5 jets	9891	0.99	0.9891				
At least 2 b-jet	9060	0.92	0.9060				
Exactly 1 lepton	2045	0.23	0.2045	Background-ttb			
MET > 20GeV	1958	0.96	0.1958	Counter cut_flow :			
				All events	10000	1.00	1.0000
Signal-s2000				At least 5 jets	7754	0.78	0.7754
Counter cut_flow :				At least 2 b-jet	5844	0.75	0.5844
All events	10000	1.00	1.0000	Exactly 1 lepton	1162	0.20	0.1162
At least 5 jets	9926	0.99	0.9926	MET > 20GeV	1074	0 92	0 1074
At least 2 b-jet	9265	0.93	0.9265		1071	0.52	0.10/1
Exactly 1 lepton	1977	0.21	0.1977	De change of the se			
MET > 20GeV	1924	0.97	0.1924	Background-ttbar			
				Counter cut_flow :			
				All events	10000	1.00	1.0000
				At least 5 jets	5726	0.57	0.5726
				At least 2 b-jet	3010	0.53	0.3010
				Exactly 1 lepton	454	0.15	0.0454
				MET > 20GeV	401	0.88	0.0401

Kinematic Distributions (m_H=1 TeV)

Kinematic Distributions (m_H=1 TeV)

Kinematic Distributions (m_H=2 TeV)

Kinematic Distributions (m_H=2 TeV)

Normalized Distributions of p_T^{lepton}, H_T and MET

Cuts flow for analysis

• For the reconstruction;

Object	Requirement
Single muon or electron	p _T >30 GeV, η <3.0
At least five jets (Njet>=5)	p _T >30 GeV, η <3.0
At least two bjet (Nbjet>=2)	p _T >30 GeV, η <3.0
Missing p _T	p _T >30 GeV
Lepton(I), jets separation	ΔR(l,j)>0.4 and ΔR(j,j)>0.4
Reconstructed top mass	130 <m<sub>wb<200 GeV</m<sub>
Reconstructed H [±] mass	m _{tb} - m _{H±} <0.2*m _{H±}

Hadronic top mass – shape comparison

m_{TW} distributions from signal and background

Invariant Mass Distributions

We calculate statistical significance (SS) from signal (NS) and background events (NB) within the interval $|m^{reco}$ - $m_{H^-}|<0.2^*m_{H^-}$.

$SS = [2^{((NS+NB)^{In}(1+NS/NB)-NS)]^{1/2}}$

Number of signal and background events and statistical significance for an integrated luminosity of $L_{int} = 1 \text{ ab}^{-1}$ at FCC-hh.

Mass(GeV)	NS	NB	SS
500	1299456.0	13371600.0	349.82
1000	135736.2	12145100.0	38.87
2000	9650.6	441540.0	14.47

Conclusions

- Possible extensions of the Higgs sector can be searched for a wide range of parameter space in the high energy protonproton collisions.
- We have studied the charged Higgs boson single production within a model-independent framework in the proton-proton collisions at the FCC-hh collider.
- The production of charged Higgs boson through pp→tH±X process explored in the mass range 0.5 to 2 TeV using multijets final states with one electron or muon and missing transverse momentum.
- Using the relevant SM backgrounds from the lepton+jets final states, we obtain a significant coverage of the parameter space and distinguish the charged Higgs boson-top-bottom interaction for a mass up to 2 TeV.

BACKUP SLIDES

I.T.C **21**

Analysis steps with Heppy

I.T.C **22**

Kinematic Distributions (m_H=500 GeV)

Kinematic Distributions (m_H=500 GeV)

