Experimental Interaction Region Optics for the High Energy LHC

Leon van Riesen-Haupt, J. Abelleira, E. Cruz-Alaniz, P. Mirave, A. Seryi, JAI Oxford
M. Crouch, M. Hofer, J. Keintzel, R. Tomas, F. Zimmermann, CERN
Experimental Interaction Region

- Need a new triplet for the final focus
 - 😕 More rigid beam
 - 😥 Increase in debris
 - 😃 FCC NbSn technology

- Separation dipoles
 - 😕 More rigid beam
 - 😥 Less space
 - 😃 FCC NbSn technology

- Space for crab cavities

- Matching section
 - 😕 More rigid beam
 - 😥 Has to fit in LHC tunnel
Algorithm

Set total length and fix required beam stay clear, β^*, L^*, gaps and shielding

- Initially 10 mm shielding

 FCC Week 2017

- $\bar{\epsilon} = 2.5 \, \mu m$, $\beta^* = 25 \, cm$

- 12 σ Beam stay clear
 - $12 \times 1.5 = 18\sigma$ to consider crossing
Algorithm

Set total length and fix required beam stay clear, β^*, L^*, gaps and shielding

Use fast FOM to scan large range in parameter space

Determine sensible range $g \pm 0.005$, $l_4 \sim 2\% + 8\%$

Use PyMadX for small scan of accurate beam stay clear using current shielding (12×25 resolution)

Find setup with largest beam stay clear

If beam stay clear larger than required

Plot ideal setup and output lengths + strengths
Optics-FLUKA interaction

- Set required β^*, L^* and use initial shielding
- Use code to find shortest setup with good beam stay clear
- Use this setup for radiation studies of triplet
- Change shielding accordingly
- Work out shielding required for this setup

Integrate and match into machine for further studies

J. Abelleira
New Triplet

- Overall 8.2 m longer than HL-LHC Triplet
- Study resulted in triplet with 2 cm shielding
 - Talk by J. Abelleira
- Overall 8.2 m longer than HL-LHC Triplet
- Study resulted in triplet with 2 cm shielding
- $\beta^* = 25 \text{ cm}$
- $\theta/2 = 131 \mu\text{rad}$
- 14σ aperture
- Potentially much more shielding in Q1
- Larger crossing might be needed
 - $\theta/2 = 180 \mu\text{rad}$ possible
 - $\theta/2 = 210 \mu\text{rad}$ with 1.8 mm shielding in Q3
 - See talk by T. Pieloni
• Less space for separation than LHC due to triplet
 – 205 mm vs. 194 mm
• Larger separation than LHC
 – 205 mm vs. 194 mm
• D1 – Single aperture
 – Superconducting
 – 140 mm aperture
 – 11 T (challenging)
• D2 – Double aperture
 – Superconducting
 – 70 mm aperture
 – 7 T
Crab Cavities

- Currently space reserved between D2 and Q4
 - Adapted from HL LHC
 - Shares space with orbit corrector
 - 11 m space in front of correctors

- β functions in this space
 - $\beta_x = 7750 \rightarrow 14360 \text{ m}$
 - $\beta_y = 4260 \rightarrow 5260 \text{ m}$

- Taking $\beta = 4500 \text{ m}$, $\beta^* = 0.25 \text{ m}$ and 130μrad crossing
 - Voltage = 6.3 MV
 - Compared to 6 MV in HL LHC

- Larger angle needs more voltage
 - See talk by T. Pieloni
Matching to Arc

- **Optics Matching**
 - Increase length of first four matching quadrupoles

- **Chromaticity correction**
 - Need to optimise this phase
 - $\pi/2 \, [\pi]$ phase from IP to sextupoles
 - $\pi/4$ between sextupoles

- **Challenging – compromise**
 - Match to second sextupole only

\[
\begin{align*}
\mu_x &= \frac{\pi}{2} \left[\pi \right] \\
\mu_y &= \frac{\pi}{2} \left[\pi \right]
\end{align*}
\]
Matching to Arc

• Lack of flexibility in Dispersion suppressor
 – Geometry fixed from LEP
 – TWIS constrained by arc

• Very dependant on rest of lattice including DS
 – Worked in V0.2
 – Currently no solution in V0.3
 – See talk by R. Tomas on lattice versions
Injection Optics

- HL LHC injection optics has $\beta^* = 11 \, \text{m}$
 - Use this as provisional baseline
 - Using 12σ separation
 - This gives $> 12 \sigma$ N1 in triplet
- Limit β to 275 m – like arcs
 - Could face similar aperture problems
 - Potentially same 450 GeV beam as LHC
 - Smaller beam screen aperture
Dynamic Aperture with Triplet Errors

- Using V0.2
- Errors scaled from FCC
- Added errors one by one
 - No errors for reference
 - Added a3/b3 errors
 - Added a4/b4 errors
 - Included all errors

E. Cruz, M. Crouch
Dynamic Aperture with Triplet Errors

- Using V0.2
- Errors scaled from FCC
- Added errors one by one
 - No errors for reference
 - Added a3/b3 errors
 - Added a4/b4 errors
 - Included all errors
- Non-linear correctors
 - Package behind triplets
 - b_3 using $c(b_3; 1, 2)$ & $c(b_3; 2, 1)$
 - a_3 using $c(a_3; 3, 0)$ & $c(a_3; 0, 3)$

E. Cruz, M. Crouch
Dynamic Aperture with Triplet Errors

- Using V0.2
- Errors scaled from FCC
- Added errors one by one
 - No errors for reference
 - Added a_3/b_3 errors
 - Added a_4/b_4 errors
 - Included all errors
- Non-linear correctors
 - Package behind triplets
 - b_3 using $c(b_3; 1, 2)$ & $c(b_3; 2, 1)$
 - a_3 using $c(a_3; 3, 0)$ & $c(a_3; 0, 3)$
- Added crossing angle

E. Cruz, M. Crouch
Dynamic Aperture with Triplet Errors

- **Double tuning approach**
 - Vary phase between EIRs
 - Big impact in FCC
 - E. Cruz, Dynamic aperture at collision
 - Done using arcs

- **Coupling correction**
 - Using skew quadrupoles
 - Match $R_{11} = R_{12} = R_{21} = R_{22} = 0$ at both ends of EIR

- Increases DA to 6.4σ
 - No other errors added yet
 - Need to further increase
IR4 and Tuning

• Doubled space for RF cavities
• Added another pair of quadrupoles for tuning

P. Mirave
IR4 and Tuning

• Doubled space for RF cavities
• Added another pair of quadrupoles for tuning
 – Allows one to change phase advance
 – No beating in cavities
• Doubled space for RF cavities
• Added another pair of quadrupoles for tuning
 – Allows one to change phase advance
 – No beating in cavities
• Large range of phase advance
 – Can be used as handle to increase DA
 – Aim to implement something similar in IR6
Conclusion

- Experimental IR first design iteration complete
 - Triplet optimisation
 - Separation and crab schemes
 - Further work needed on matching and dispersion suppressor

- Dynamic aperture studies with triplet errors
 - Non-linear correctors
 - Double tuning and coupling correction
 - 6.4σ achieved

- IR4 optimised for HE-LHC and tune change
Thank you!
Backup
Triplet Optimisation

- **Parameters affecting triplet beam stay clear**
 - \uparrow Gradient = \downarrow Aperture
 - Individual magnet lengths
 - β functions in magnets
- **Scan parameter space**
 - Fixed length triplet
 - Find triplet with largest beam stay clear
 - Thin lens scan first
 - Then precise MADX scan