

Experimental Interaction Region Optics for the High Energy LHC

Leon van Riesen-Haupt, J. Abelleira, E. Cruz-Alaniz, P. Mirave, A. Seryi, JAI Oxford M. Crouch, M. Hofer, J. Keintzel, R. Tomas, F. Zimmermann, CERN

Experimental Interaction Region

- Need a new triplet for the final focus
 - ⊗ More rigid beam
 - Increase in debrisFCC NbSn technology
- Separation dipoles
 - More rigid beam
 Less space
 FCC NbSn technology
- Space for crab cavities
- Matching section
 More rigid beam
 Has to fit in LHC tunnel

 \mathcal{A} I

 \mathcal{A}

Set total length and fix required beam stay clear, $\beta^{*},\,L^{*},\,$ gaps and shielding

- Initially 10 mm shielding FCC Week 2017
- $\overline{\epsilon} = 2.5 \,\mu\text{m}, \beta^* = 25 \,\text{cm}$
- 12 σ Beam stay clear
 - $12 \times 1.5 = 18\sigma$ to consider crossing

Set total length and fix required beam stay clear, β^* , L*, gaps and shielding

Use fast FOM to scan large range in parameter space

Determine sensible range $g \pm 0.005$, $l_4 - 2\% + 8\%$

Use PyMadX for small scan of accurate beam stay clear using current shielding (12×25 resolution)

Find setup with largest beam stay clear

f beam stay clear larger than required

Plot ideal setup and output lengths + strengths

BSC

smaller than required Increase

total length

Royal Holloway

Optics-FLUKA interaction

AI

7AI

New Triplet

• Overall 8.2 m longer than HL-LHC Triplet

- Study resulted in triplet with 2 cm shielding
 - Talk by J. Abelleira

Aperture

- Overall 8.2 m longer than HL-LHC Triplet
- Study resulted in triplet with 2 cm shielding
- $\beta^* = 25 \text{ cm}$
- *θ*/2=131 μrad
- 14 σ aperture
- Potentially much more shielding in Q1
- Larger crossing might be needed
 - $\theta/2 = 180 \mu rad possible$
 - $\theta/2 = 210 \mu rad$ with 1.8 mm shielding in Q3
 - See talk by T. Pieloni

- Less space for separation than LHC due to triplet
- Larger separation than LHC

 205 mm vs. 194 mm
- D1 Single aperture
 - Superconducting
 - 140 mm aperture
 - 11 T (challenging)
- D2 Double aperture
 - Superconducting
 - 70 mm aperture
 - 7 T

Crab Cavities

3)]

)**01*

(m)

ന്

(m),

ന്

- Currently space reserved between D2 and Q4
 - Adapted from HL LHC
 - Shares space with orbit corrector
 - 11 m space in front of correctors
- β functions in this space
 - $-\beta_x = 7750 \rightarrow 14360 \text{ m}$
 - $-\beta_y = 4260 \rightarrow 5260 \text{ m}$
- Taking $\beta = 4500 \text{ m}$, $\beta^* = 0.25 \text{ m}$ and 130 μ rad crossing
 - Voltage = 6.3 MV
 - Compared to 6 MV in HL LHC
- Larger angle needs more voltage
 - See talk by T. Pieloni

Matching to Arc

3)]

)**0[*]

 $\mathfrak{Z}_{k}(m),\ \mathfrak{Z}_{k}(m)$

- Optics Matching
 - Increase length of first four matching quadrupoles
- Chromaticity correction
 - Need to optimise this phase
 - $\pi/2$ [π] phase from IP to sextupoles
 - $\pi/4$ between sextupoles
- Challenging compromise
 - Match to second sextupole only

- Lack of flexibility in Dispersion suppressor
 - Geometry fixed from LEP
 - TWIS constrained by arc
- Very dependant on rest of lattice including DS
 - Worked in V0.2
 - Currently no solution in V0.3
 - See talk by R. Tomas on lattice versions

- HL LHC injection optics has $\beta^* = 11 \text{ m}$
 - Use this as provisional baseline
 - Using 12σ separation
 - This gives> 12 σ N1 in triplet
- Limit β to 275 m like arcs
 - Could face similar aperture problems
 - Potentially same 450 GeV beam as LHC
 - Smaller beam screen aperture

- Using V0.2
- Errors scaled from FCC
- Added errors one by one
 - No errors for reference
 - Added a3/b3 errors
 - Added a4/b4 errors
 - Included all errors

E. Cruz, M. Crouch

OXFORD

- Using V0.2
- Errors scaled from FCC
- Added errors one by one
 - No errors for reference
 - Added a3/b3 errors
 - Added a4/b4 errors
 - Included all errors
- Non-linear correctors
 - Package behind triplets
 - b_3 using $c(b_3; 1, 2)$ & $c(b_3; 2, 1)$
 - a_3 using $c(a_3; 3, 0)$ & $c(a_3; 0, 3)$

E. Cruz, M. Crouch

- Using V0.2
- Errors scaled from FCC
- Added errors one by one
 - No errors for reference
 - Added a3/b3 errors
 - Added a4/b4 errors
 - Included all errors
- Non-linear correctors
 - Package behind triplets
 - b_3 using $c(b_3; 1, 2)$ & $c(b_3; 2, 1)$
 - a_3 using $c(a_3; 3, 0)$ & $c(a_3; 0, 3)$
- Added crossing angle

E. Cruz, M. Crouch

- Double tuning approach
 - Vary phase between EIRs
 - Big impact in FCC

EurCirCo

- E. Cruz, Dynamic aperture at collision
- Done using arcs
- Coupling correction
 - Using skew quadrupoles
 - Match $R_{11} = R_{12} = R_{21} = R_{22} = 0$ at both ends of EIR
- Increases DA to 6.4σ
 - No other errors added yet
 - Need to further increase

- Doubled space for RF cavities
- Added another pair of quadrupoles for tuning

P. Mirave

IR4 and Tuning

Doubled space for RF cavities

- Added another pair of quadrupoles for tuning
 - Allows one to change phase advance
 2
 - No beating in cavities

D(m)

D (m)

Eur CirCol A key to New Physics

IR4 and Tuning

- Doubled space for RF cavities
- Added another pair of quadrupoles for tuning
 - Allows one to change phase advance
 - No beating in cavities
- Large range of phase advance
 - Can be used as handle to increase DA
 - Aim to implement something similar in IR6

- Experimental IR first design iteration complete
 - Triplet optimisation
 - Separation and crab schemes
 - Further work needed on matching and dispersion suppressor
- Dynamic aperture studies with triplet errors
 - Non-linear correctors
 - Double tuning and coupling correction
 - 6.4 σ achieved
- IR4 optimised for HE-LHC and tune change

Thank you!

FCC Week 2018: Experimental Interaction Region Optics for the High Energy LHC

Backup

FCC Week 2018: Experimental Interaction Region Optics for the High Energy LHC

Triplet Optimisation

- Parameters affecting triplet beam stay clear
 - ↑Gradient =↓Aperture
 - Individual magnet lengths
 - β functions in magnets
- Scan parameter space
 - Fixed length triplet
 - Find triplet with largest beam stay clear
 - Thin lens scan first
 - Then precise MADX scan

