# IDEA: a detector concept for FCC





# Physics drivers recap



#### Physics drivers

- > Higgs:
  - Tracking (recoil mass), vertex (b/c separation), calorimetry (hadronic W/Z,  $\gamma\gamma$ ), pre-shower ( $\tau$  decays with  $\pi^0$ 's)

| Physics Process                    | Measured Quantity                  | Critical Detector | Required Performance                                                 |
|------------------------------------|------------------------------------|-------------------|----------------------------------------------------------------------|
| $ZH \to \ell^+\ell^- X$            | Higgs mass, cross section          | - Tracker         | $\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$                          |
| $H \to \mu^+ \mu^-$                | $BR(H \to \mu^+ \mu^-)$            |                   | $\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$                      |
| $H \to b\bar{b}, \ c\bar{c}, \ gg$ | $BR(H \to b\bar{b}, c\bar{c}, gg)$ | Vertex            | $\sigma_{r\phi} \sim 5 \oplus 10/(p\sin^{3/2}\theta) \ \mu \text{m}$ |
| $H \to q\bar{q}, \ VV$             | $BR(H \to q\bar{q}, VV)$           | ECAL, HCAL        | $\sigma_E^{ m jet}/E \sim 3-4\%$                                     |
| $H \to \gamma \gamma$              | $\mathrm{BR}(H\to\gamma\gamma)$    | ECAL              | $\sigma_E \sim 16\%/\sqrt{E} \oplus 1\% \text{ (GeV)}$               |



- Z pole:
  - Mostly covered by above
  - Excellent acceptance determination
- > WW, t t-bar mostly covered by previous

### Differences with ILC



#### Luminosity is much higher!

- ➤ Non-negligible machine backgrounds
  - Fast detector integrates less background in each readout



### Differences with ILC



- Luminosity is much higher!
  - Non-negligible machine backgrounds
    - Fast detector integrates less background in each readout
- ❖ Detector solenoid constrained by beam emittance preservation at IR (~ 2T)
  - > TPC: issues with transverse diffusion
  - Silicon: can't compensate smaller tracking radius with large field

### Differences with ILC



#### Luminosity is much higher!

- Non-negligible machine backgrounds
  - Fast detector integrates less background in each readout
- ◆ Detector solenoid constrained by beam emittance preservation at IR (~ 2T)
  - > TPC: issues with transverse diffusion
  - Silicon: can't compensate smaller tracking radius with large field
- Beam time structure:
  - > Short bunch spacing (~ 20-30 ns Z, ~ 1 μs H)
  - No large time gap
    - Cooling issues for PF calorimeter and vertex detector
    - TPC ion backflow



### Other drivers



#### Extreme statistical resolution on Z pole

- Acceptance systematics control is critical
  - Silicon layer after DCH for acceptance and charged resolution
  - **Pre-shower** with high precision and stability allows  $\mu$ m level acceptance definition for  $\gamma$

#### Other drivers







### $\star \pi^0$ important in tau and HF physics

- No  $\pi^0$ : 35%  $\tau \rightarrow 1$  (e,  $\mu$ )  $\nu\nu + 20\% \tau \rightarrow (1,3)\pi^{\pm}$   $\nu$
- $\blacksquare 1 \pi^0$ :  $28\% \tau \rightarrow (1,3)\pi^{\pm}\pi^{0}lv$
- $-2-3\pi^0$ :  $10\% \tau \rightarrow \pi^{\pm}(2,3) \pi^{0} lv$
- High granularity/Pre-shower  $\rightarrow \pi^0$  identification
- Overlap with  $\pi^+$  may require longitudinal segmentation



#### Detector solenoid



#### ❖ 2T field solenoid – Rin ~ 2 m

- $\triangleright$  Can be made very thin  $\sim 30$  cm total = 0.74  $X_0$  (0.16  $\lambda$ ) at  $\theta = 90^{\circ}$ 
  - Calorimeter can be located outside coil
- Small yoke thickness 50-100 cm Fe
  - Scales with B  $R^2 \rightarrow$  cost reduction over large coil

| Value |
|-------|
| 2     |
| 4     |
| 170   |
| 8     |
| 2.2   |
| 0.03  |
| 6     |
|       |

#### See next talk of H. ten Kate





♣ Beam pipe (R~1.5 cm)



- ❖ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers



- ❖ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- **DCH:** 4 m long, R 30-200 cm





- ❖ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- **❖** DCH: 4 m long, R 30-200 cm
- Outer Silicon Layer





- ❖ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- **❖** DCH: 4 m long, R 30-200 cm
- Outer Silicon Layer
- **♦** SC Coil : 2 T, R~2.1 m





- ❖ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- **❖** DCH: 4 m long, R 30-200 cm
- Outer Silicon Layer
- **♦** SC Coil : 2 T, R~2.1 m
- •• Preshower:  $\sim 1-2 X_0$





- ❖ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- **❖** DCH: 4 m long, R 30-200 cm
- Outer Silicon Layer
- **♦** SC Coil : 2 T, R~2.1 m
- •• Preshower:  $\sim 1-2 X_0$
- DR calorimeter: 2 m/7  $\lambda_{int}$





- **❖** Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- **❖** DCH: 4 m long, R 30-200 cm
- Outer Silicon Layer
- **♦** SC Coil : 2 T, R~2.1 m
- •• Preshower:  $\sim 1-2 X_0$
- DR calorimeter: 2 m/7  $\lambda_{int}$
- ❖ Yoke + muon chamber





- ♣ Beam pipe (R~1.5 cm)
- ❖ VTX: 4-7 MAPS layers
- ❖ DCH: 4 m long, R 30-200 cm
- Outer Silicon Layer
- **♦** SC Coil : 2 T, R~2.1 m
- Preshower:  $\sim 1-2 X_0$
- DR calorimeter: 2 m/7  $\lambda_{int}$
- ❖ Yoke + muon chamber



### Vertex detector



### Build on ALICE ITS technology

- > 30x30 μm MAPS
  - 5 µm spatial resolution
    - Also after irradiation
  - Smaller pixels possible
- > %X0
  - 0.3-1.0% (in-out)
- **Power:** 
  - 41-27 mW/cm2 (in-out)
- Radiation hard
- >100 kHz readout
  - Faster possible





#### Tracker



#### Drift Chamber: fast, good resolution/dE/dx w/ cluster count

- ► Ultralight chamber (<1%  $X_0$ ) gas: He 90%  $iC_4H_{10}$  10%
- $\triangleright$  4 m long, drift length ~1 cm, drift time ~400ns,  $\sigma_{xy}$  < 100  $\mu$ m

More details in next talk from G. Tassielli



#### Tracker



### Drift Chamber: fast, good resolution/dE/dx w/ cluster cou

- Ultralight chamber ( $<1\% X_0$ ) gas: He 90%  $iC_4H_{10}$  10%
- $\triangleright$  4 m long, drift length ~1 cm, drift time ~400ns,  $\sigma_{xy}$  < 100  $\mu$ m

DCH only 
$$\frac{\Delta p_{\perp}}{p_{\perp}} = \frac{8\sqrt{5}\sigma}{.3BL^2\sqrt{n}} p_{\perp} = 7.1 \times 10^{-5} p_{\perp} \left[ GeV/c \right]$$



$$L = 1.7 \text{ m}$$

$$N = 112$$





#### Tracker



### Drift Chamber: fast, good resolution/dE/dx w/ cluster cou

- ► Ultralight chamber (<1%  $X_0$ ) gas: He 90% i $C_4H_{10}$  10%
- $\triangleright$  4 m long, drift length ~1 cm, drift time ~400ns,  $\sigma_{xy}$  < 100 µm
- $\frac{\Delta p_{\perp}}{p_{\perp}} = \frac{8\sqrt{5}\sigma}{.3BL^2\sqrt{n}}p_{\perp} = 7.1 \times 10^{-5}p_{\perp} \left[ \frac{GeV}{c} \right]$ DCH only



$$L = 1.7 \text{ m}$$

$$N = 112$$

- $dE/dx \sim 4\%$
- $dN/dx \sim 2\%$ 
  - To be tested









### Calorimeter



#### Dual readout calorimeter

- ► Build on DREAM/RD52 experience
  - Transverse granularity ~ 2 mm
  - Event-by-event f<sub>em</sub> fluctuations correction



Details in next talk by M. Antonello

### Calorimeter



#### Dual readout calorimeter

- ► Build on DREAM/RD52 experience
  - Transverse granularity ~ 2 mm
  - Event-by-event f<sub>em</sub> fluctuations correction
- Demonstrated EM resolution



#### Calorimeter



#### Dual readout calorimeter

- Build on DREAM/RD52 experience
  - Transverse granularity ~ 2 mm
  - $\blacksquare$  Event-by-event  $f_{em}$  fluctuations correction
- Demonstrated EM resolution
- ► Had. resolution extr. with GEANT4







- Fully exploit high granularity/better QE
  - Compact multiplexed readout



- Fully exploit high granularity/better QE
  - Compact multiplexed readout
- R&D/test beams in progress
  - SiPM pixel density optimization









- Fully exploit high granularity/better QE
  - Compact multiplexed readout
- R&D/test beams in progress
  - SiPM pixel density optimization
  - Double level readout to reduce optical cross talk







- Fully exploit high granularity/better QE
  - Compact multiplexed readout
- R&D/test beams in progress
  - SiPM pixel density optimization
  - Double level readout to reduce optical cross talk
  - Monolithic segmentation



### Muons



- Momentum measurement
  - ➤ Vertex+DCH+Si: ~ 0.4% @ 100 GeV
  - ► ID ok if isolated



#### Muons



#### \* Momentum measurement

- ➤ Vertex+DCH+Si: ~ 0.4% @ 100 GeV
- ➤ ID ok if isolated

#### Better muon ID in jets:

- More filter behind calorimeter
  - Iron yoke (>50 cm Fe)
- with additional chambers
  - u-RWELL low-cost technology already proven for low rate applications (CMS/SHiP)
  - See:
    - \* Talk by P. Giacomelli in Common Det. Tech.
    - Poster by G. Bencivenni





# Comments & work in progress

#### Tracking performance

- ➤ Noise from beam background drives inner radius → talk by N. Tehrani
- ➤ Optimizing VTX detector configuration → little sensitivity found
- Comparison with CLD all Si option
  - Same p<sub>t</sub> resolution @100 GeV
  - Comparable impact parameter resolution (depends on pixels size)





#### Tracking performance

- ➤ Noise from beam background drives inner radius → talk by N. Tehrani
- ➤ Optimizing VTX detector configuration → little sensitivity found
- Comparison with CLD all Si option
  - Same p<sub>t</sub> resolution @100 GeV
  - Comparable impact parameter resolution (depends on pixels size)

### ❖ IDEA vertical slice test beam September 2018

- ➤ Measure improvement on PID with cluster counting
- ► Effect of pre-shower in front of RD52 prototype
- ➤ Test ideas for calorimeter longitudinal segmentation
- More studies of calorimeter SiPM readout
- > Test muon chamber efficiency and resolution





- Forward tracking in vertex and large radius regions
  - So far not designed at all





- Forward tracking in vertex and large radius regions
  - So far not designed at all
- Potential calorimeter longitudinal segmentation
  - ➤ (Monolithic) segmented calorimeter outside magnet
  - $\triangleright$  EM lead calorimeter is 20 cm deep (22  $X_0$ )
    - Could go inside magnet with small change in magnet size

# Additional detector configuration studies



- Forward tracking in vertex and large radius regions
  - So far not designed at all
- Potential calorimeter longitudinal segmentation
  - ➤ (Monolithic) segmented calorimeter outside magnet
  - $\triangleright$  EM lead calorimeter is 20 cm deep (22  $X_0$ )
    - Could go inside magnet with small change in magnet size
- Pre-shower optimization
  - ➤ Thickness, resolution & coverage





- ❖ IDEA is a detector concept optimized for FCC
  - Current detector described in FCC-ee CDR

#### Conclusions



- ❖ IDEA is a detector concept optimized for FCC
  - Current detector described in FCC-ee CDR
- Basic detector components based on proven techniques

### Conclusions



- ❖ IDEA is a detector concept optimized for FCC
  - Current detector described in FCC-ee CDR
- Basic detector components based on proven techniques
- More work in progress to optimize design
  - Detector R&D/test beam
  - Benchmark with simulation
  - Mechanical engineering

#### Conclusions



- ❖ IDEA is a detector concept optimized for FCC
  - Current detector described in FCC-ee CDR
- Basic detector components based on proven techniques
- More work in progress to optimize design
  - Detector R&D/test beam
  - Benchmark with simulation
  - Mechanical engineering
- With encouragement by EPPS update could setup strong effort for the TDR



# Backin Silos

Riunione CSN1, Roma, Gennaio 2012

F. Bedeschi, INFN-Pisa

## Vertex detector



## **❖** Impressive recent test beam results



## Vertex detector







## Vertex detector











Minimal performance established (MEG-II prototype)



#### Tracker



- Minimal performance established (MEG-II prototype)
- Technical solutions engineered (MEG-II)



#### Tracker



- Minimal performance established (MEG-II prototype)
- **❖** Technical solutions engineered (MEG-II)
  - E.g. Wire stringing and soldering machine



## Calorimeter



### Potential resolution in jets

- $\rightarrow$  ~  $40\%/\sqrt{E}$ 
  - (see 4° detector concept LOI)

#### Calorimeter



#### Potential resolution in jets

- $\rightarrow$  ~  $40\%/\sqrt{E}$ 
  - **■** (see 4° detector concept LOI)
- \*Natural  $\mu/\pi/e$  separation
  - Can improve with timing and lateral shape cuts
    - $\epsilon_{\rm el} > 99\%$ , < 0.2%  $\pi$  mis-ID



#### Calorimeter



#### Potential resolution in jets

- $\rightarrow$  ~  $40\%/\sqrt{E}$ 
  - (see 4° detector concept LOI)

### \*Natural $\mu/\pi/e$ separation

- Can improve with timing and lateral shape cuts
  - $\epsilon_{\rm el} > 99\%$ , < 0.2%  $\pi$  mis-ID

#### Preshower

- Acceptance determination
- ightharpoonup e/ $\gamma$  / $\pi^0$  separation near hadrons
  - Synergy with part. flow

