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Ʒ The FCC-hh aims to expand the current energy and luminosity frontiers. The vacuum 

chamber of this 50 TeV, 100 km machine, will have to cope with unprecedented levels 

of synchrotron radiation (SR) [1], dealing at the same time with tighter impedance and 

magnet aperture requirements. In this new collider the difficulty to maintain an ultra high 

vacuum (UHV) level, essential for a proper operation, increases then considerably 

compared with the previous collider, the LHC.

Ʒ New solutions to keep the gas density low have thus to be found. The proposed  new 

vacuum chamber design, the ray tracing of the SR inside it, and the resulting molecular 

density profile is hereby presented.
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Ʒ The minimum vacuum level can be determined with 

two constraints. On one hand, and as in the LHC, it 

has to keep a beam lifetime due to nuclear 

scattering of 100 h. On the other one, the energy 

deposited on the cold mass owing to this scattering 

has to be kept below the cryogenic budget [2].

Ʒ These specifications result in a vacuum level of 

1·1015 H2 eq /m
3, around 6·10-9 mbar of H2 at 40 K
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Ʒ The new beam screen features two chambers. The inner one yields low impedance 

thanks to hiding the holes from the beam, a higher Cu thickness and lower temperature, 

whilst also minimizing the electron cloud effect thanks to the applied LASE treatment.

Ʒ The outer one, warmer, dissipates the SR with minimum scattering thanks to the Cu 

sawtooth surface, and provides the necessary gas pumping with periodic perforations.
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Ʒ The most relevant beam induced effect in the 

FCC-hh is the photon stimulated desorption 

(PSD), being it alone much higher than the other 

effects combined. In the LHC, on the contrary, it 

has a minor role, where it is surpassed by the 

electron stimulated effect (ESD) by a factor of 10, 

because of the high e-cloud density.

Ʒ In the FCC-hh, the e-cloud is supressed thanks to 

LASE, and with it the ESD contribution to ὲ
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Ʒ The absorption of the SR along the arcs vacuum chamber has been simulated with 

Synrad+ [3] obtaining a detailed texture map of the photon flux and power. The 

radiation scattering over the chamber is found to be reduced to a minimum, being 

mainly absorbed on the sawtooth (ideal), with more than a 99.5 % of power absorption.

Ʒ These ray tracing results are the basis to estimate the outgassing due to PSD and ESD 

effects, e-cloud studies, and to carry out FEM thermomechanical simulations.
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Ʒ The molecular density profile in the arcs worst 

bending magnet (before the SSS) has been found. 

It can be seen below, showing the contribution of 

each effect.

Ʒ ESD contribution would then be less relevant in this 

new collider than it was for previous ones.

Ʒ For 36 A·h (around 4.3·10 22 ph·m-1), with ideal 

sawtooth, the average ng in the FCC-hh arcs would 

be then < 7·1014 H2 eq /m
3, below the requirement.

Ʒ This dose corresponds to a conditioning time of a few months of escalated 

commissioning, according to LHCôs experience, and less than nine days of baseline 

current and energy beam parameters.

Ʒ As expected, CO turns out the be the most impacting gas species on the beam lifetime, 

while H2, at around 80% of the total, is the most common.

Ʒ The simulations performed indicate that the vacuum system of the FCC-hh arcs should 

be adequate, with a reasonably short conditioning time, similar to that of the LHC.
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