

# Additive manufacturing in-situ repair solutions for the FCC

Prof. Toms TORIMS - RTU Prof. Franck Brückner – Fraunhofer IWS, Andris RATKUS - RTU

FCC Week 2018, Amsterdam



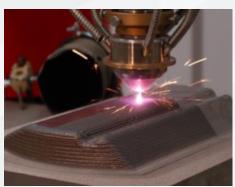
#### current achievements in the additive manufacturing

in-situ and multi-material repair solutions

• future trends and potential application within the FCC

Riga Technical University


# Additive manufacturing state-of-play


#### Additive Manufacturing (AM) Comparison of technologies



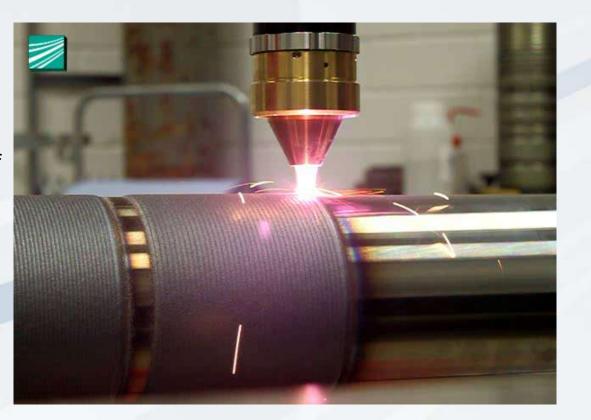
| Powder Bed                                                                                   |                                                                          | <b>Direct Laser Deposition</b>                                            |                                                                      |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| Selective Laser Melting                                                                      | Electron Beam Melting                                                    | Laser Powder                                                              | Laser Wire                                                           |
| SLM                                                                                          | EBM                                                                      | Deposition                                                                | Deposition                                                           |
| <ul> <li>part's complexness</li> <li>accuracy</li> <li>build rate</li> <li>repair</li> </ul> | <ul> <li>high-performance</li></ul>                                      | <ul> <li>productivity</li> <li>large parts</li> <li>geometrical</li></ul> | <ul> <li>clean and productive</li> <li>100% material</li></ul>       |
|                                                                                              | materials <li>part's complexness</li> <li>precision</li> <li>repair</li> | restrictions <li>powder utilization</li>                                  | utilization <li>geometrical and</li> <li>materials restrictions</li> |
|                                                                                              |                                                                          | *                                                                         |                                                                      |












Fraunhofer Dresden

4

#### Additive Manufacturing (AM) Laser Metal Deposition (LMD)

- direct material deposition within a one-step build-up welding process
- continuous supply of the feedstock material in the form of powder and wire
- dense coatings, metallurgically bonded to the substrate
- near net shape material deposition in 2D, 2.5D, and 3D
- large spectrum of materials combined as substrate and coating



Laser surface cladding process for the corrosion protection of large cylindrical parts

© Fraunhofer IWS

Contact: phone: +49 (0)351 83391-3452 email: frank.brueckner@iws.fraunhofer.de



5

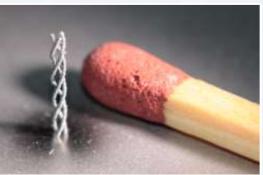
#### Additive Manufacturing (AM) usage of Laser Cladding / LMD

#### Surface cladding

- 100  $\mu m$  ... 2 mm thickness
- 100 µm ... 45 mm single track width
- cladding area up to range of m<sup>2</sup>



#### Repair


- 30 µm ... 8 mm single track with
- re-generation of damaged parts by multi-layer buildup
- exactly localized material deposition

#### Generative manufacturing

- 2.5D and 3D material build-up
- 30 µm to 5 mm lateral resolution
- part's size not generally limited

Contact:





© Fraunhofer IWS

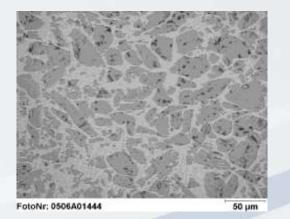
phone: +49 (0)351 83391-3452 email: frank.brueckner@iws.fraunhofer.de

Fraunhofer IWS

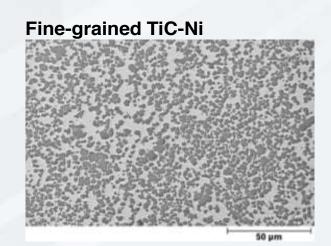
Dresden

#### Laser Metal Deposition Functionally graded material (FGM)

#### multi-material


- gradients
- material mixture
- compounds

objects with varying:


densities thermal expansions magnetism conductivities

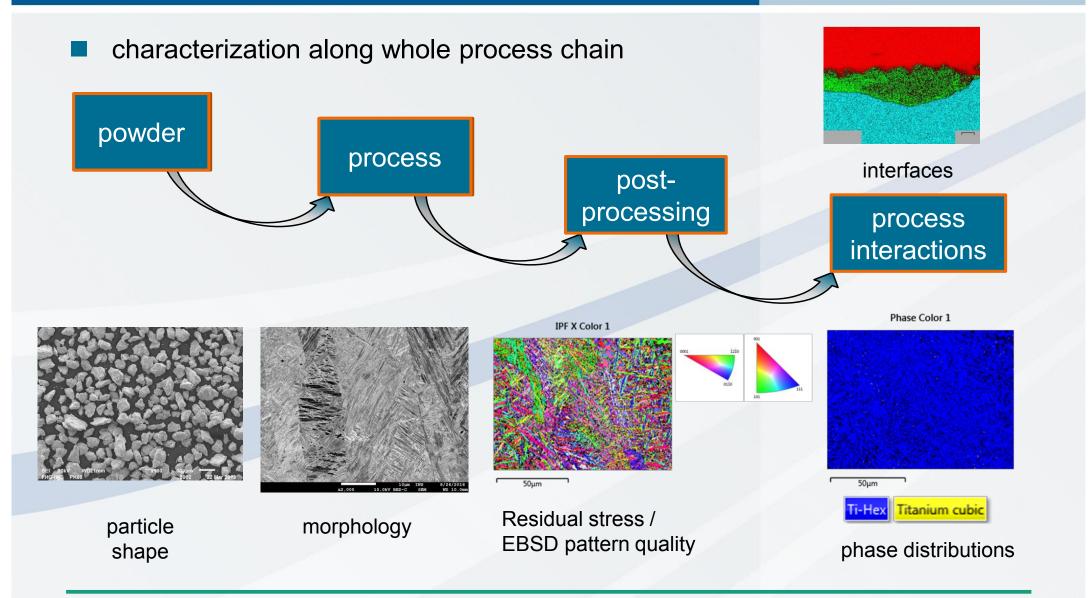
strengths

melting temperatures



**Coarse-grained WC-NiBSi** 




© Fraunhofer IWS

Contact: phone: +49 (0)351 83391-3452 email: <u>frank.brueckner@iws.fraunhofer.de</u>

Fraunhofer IWS Dresden

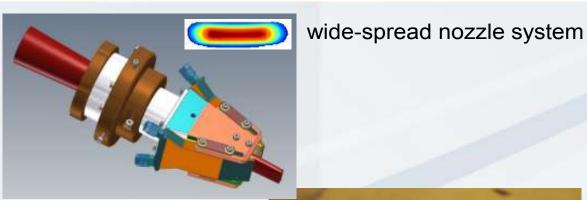
### Quality management in AM *From powder to part*





#### Additive Layer Manufacturing From micro to large components




#### Laser Metal Deposition with powder Large components

High-rate deposition using high power diode laser sources

- wide single tracks
- fine-grained solidification structure
- metallurgical bonding to the substrate

Contact:

dilution only 3...5%



large-area coating with reduced overlapping of the single tracks  $\rightarrow$  increased coating rate



cross-section Ni base coating, one single track!

© Fraunhofer IWS

phone: +49 (0)351 83391-3452 email: frank.brueckner@iws.fraunhofer.de

Fraunhofer manufath IWS

10 mm

Dresden

#### Laser Wire Deposition Examples

- repair of components
- realization of new materials solutions in generative processes (TiAl, Ni super alloys)
- generation of lightweight structures
- generation of tool sections
- cladding of cylindrical parts with high surface quality













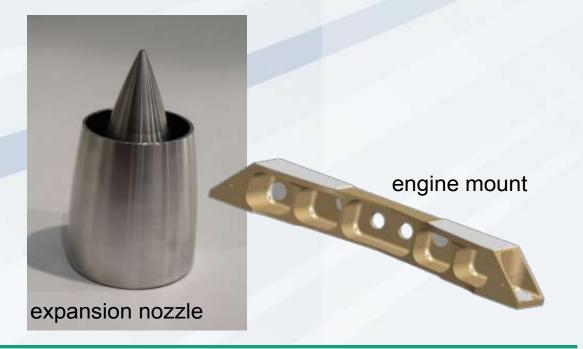
© Fraunhofer IWS

Contact: phone: +49 (0)351 83391-3452 email: frank.brueckner@iws.fraunhofer.de

IWS

Fraunhofer




Dresden

#### Laser Metal Deposition with wire Large components

#### Manufacturing of large parts in robotic systems



- latest development: use of inexpensive and efficient diode lasers
  - 4 kW laser power; 30 mm\*mrad BPP
- materials, e. g. TiAl6V4, Inconel 728, AIMg5



Contact: phone: +49 (0)351 83391-3452 © Fraunhofer IWS email: frank.brueckner@iws.fraunhofer.de

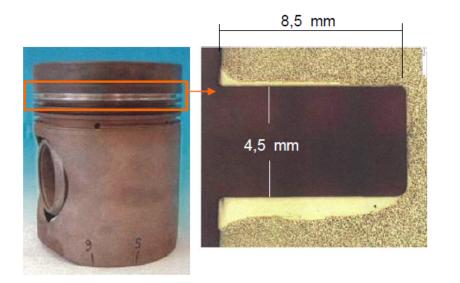


Fraunhofer Mr. M.

### Application

### Where it is applyed today?

Proved its high efficiency, precision and economic benefits in repair sectors:


- aerospace
- automotive
- ship repair

#### Why industry is interested?

- very flexible
- well suited for multi-material micro and macro in-situ repairs.
- Additive manufacturing equipment, tools and technical solutions are getting more and more compact, precise, productive, versatile and... cheaper

### Application of the technology

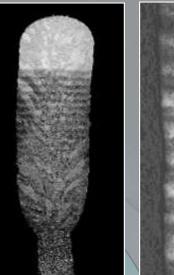
- Not any more niche product
- multipurpose manufacturing solution



### Source: TRUMPF - industrial applications of laser cladding and the equipment required

Riga Technical University






#### Laser Metal Deposition *Ti components*

- **Ti-Based alloys**
- repair, new parts
- e.g. blades, (blisk)

© Fraunhofer IWS

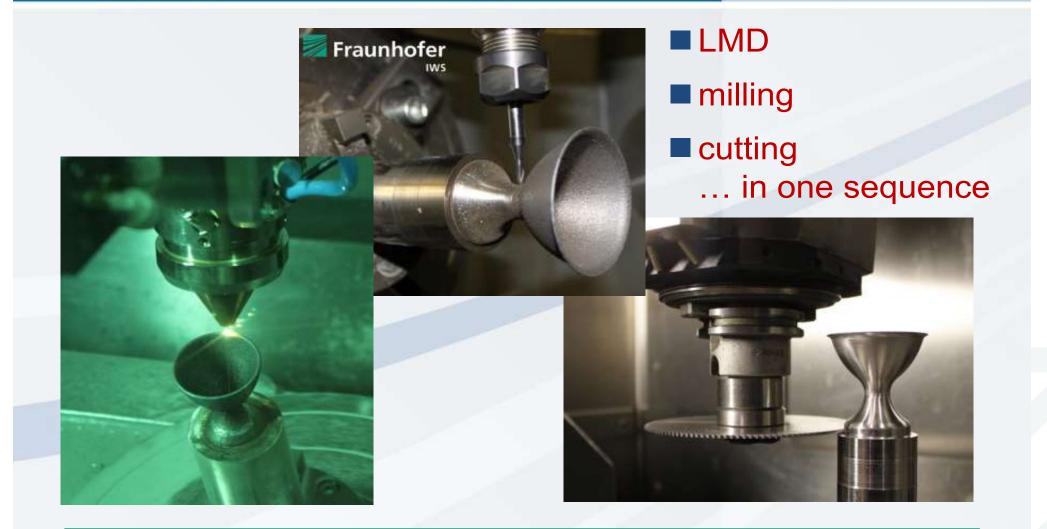






0.5 mm

0




Dresden

0,5 mm

16

#### Additive Manufacturing (AM) Fabrication of nozzle geometries



© Fraunhofer IWS

Contact: phone: +49 (0)351 83391-3452 email: frank.brueckner@iws.fraunhofer.de

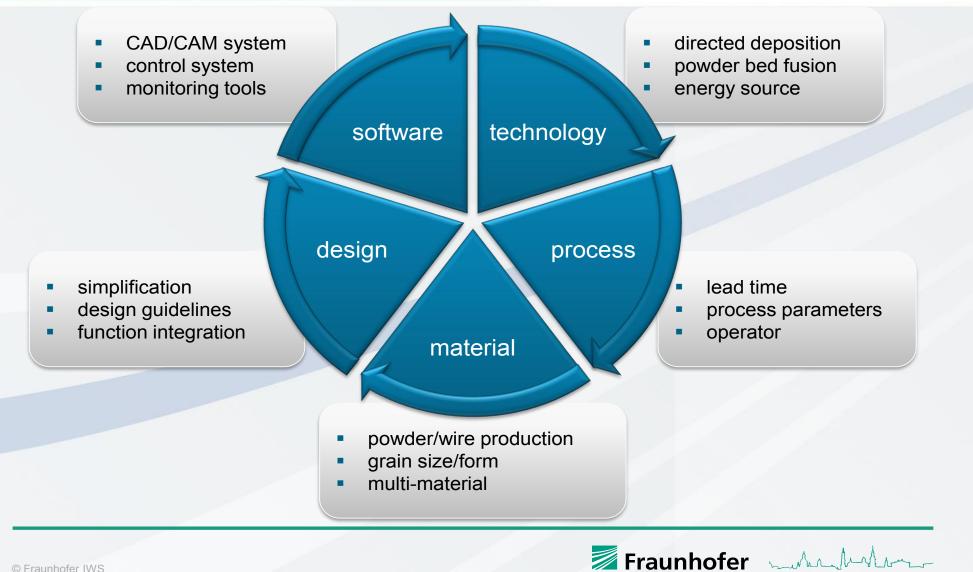


Dresden

17

### **Comparative advantages**

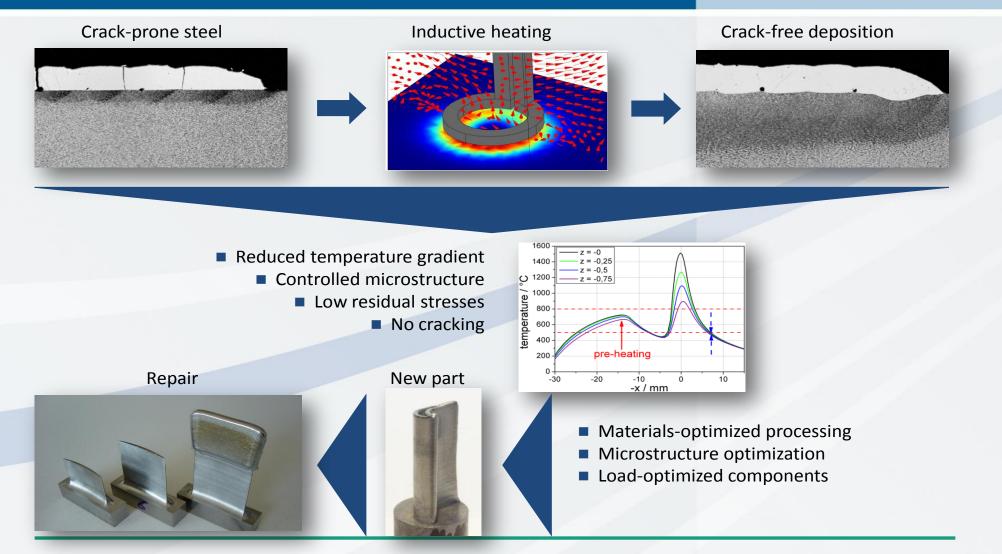
- minimal dilution and distortion
- enhanced thermal control
- Heat Affected Zone is reduced
- customised surface parameters
- Iow porosity and few imperfections
- high precision and surface quality parameters
- the resulting surface material has characteristics similar to or even better than the original


### **Comparative advantages**

- reduced production time (compared e.g. with welding)
- highly satisfactory repair of parts
- production of a functionally graded parts
- production of smart structures
- Perfect technology for in-situ repairs
- Suitable for automation

### **Future trends**

#### Additive Manufacturing (AM) Technologies at Fraunhofer IWS






WS Dresden

#### Core Research Topics @ IWS Focus Materials and Processes





© Fraunhofer IWS

WS



Dresden

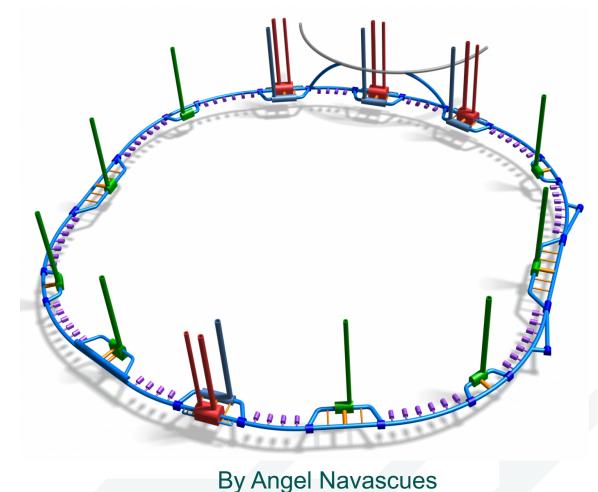
### **Future trends**

- general trend additive manufacturing equipment and appliances will continue to become smaller, cheaper, more user-friendly and flexible
- new manufacturing opportunities arise from the nature of laser processing as it is a non-contact process that causes no tool wear
- able to process conventionally untreatable materials and discrete portions of large components as well as precisely treat small components and selected areas
- the laser beam is also able to access concealed locations

### **Future trends**

- development of autonomous machines for the additive manufacturing process that can not only deposit a wide range of alloys, but also make complex shapes without the need for the presence of engineers
- the development of an automated machine may not be possible without a close collaborations between researchers from different disciplines
- hybrid technologies e.g. additive manufacturing + milling

### **Potential application in FCC**


### What is there for FCC?

This is about:

- conceptual aspects required for the FCC accelerator
- Identification of design and performance limitations for the accelerator
- Challenges v/s opportunities for technological breakthroughs

Conclusion is rather clear:

 due to the nature, size, scale and complexity of the environment, the deployment of conventional repair methods and technologies will be insufficient in the FCC



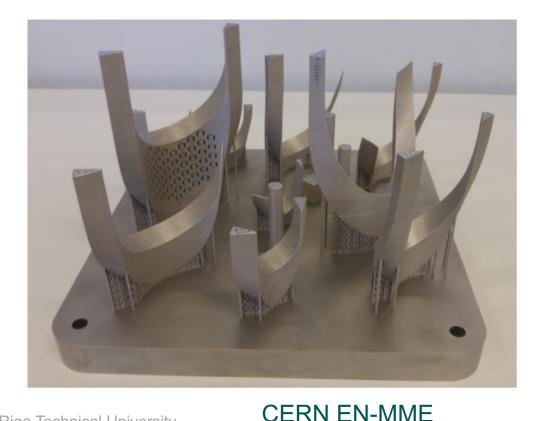
### Vision – 20 years ahead

- solution for the FCC:
  - remote manipulations?
  - unconventional repair technologies?
- What materials we will be having within 20 years?
- Which properties?
- How we will be doing repairs?
- What will be the general maintenance and repair strategy chosen for the FCC?
  - preventive maintenance
  - or predictive maintenance
  - run-to-failure

# Advanced robotic and remote manipulation systems

- Robotics together with novel in-situ repair technologies, offer tangible repair results.
- one of the solutions for the FCC is a remotely controlled robotic platform performing in-situ additive manufacturing repairs






CERN EN-SMM

**CERN EN-SMM** 

**Application** 

## Manufacturing of the components



Riga Technical University

## Repair of components, parts, structures etc.

CRANEbot for accessing "complicated" areas



### **Potential for FCC**

- Fire safety is different from welding less heat and very local impact
- Flexibility type and material
- Large variety of materials, including composite everything that tolerates laser melting
- Could be applied to unknown and novel materials
- From nano to macro
- Fast reaction time-to-action
- No human intervention automation and remote manipulation
- Reliable technology
- Can work in hazardous environment

Offers a new concept/philosophy - could be used not only during operation but also in the construction, installation and testing phase of the FCC 30

### Challenges

### there are several directions where R&D is needed:

- Environmental
- Safety
- Technological
- Process monitoring
- Interfaces
- Machine learning

#### Input parameters

- •Laser power, spot size, wave length, pulsed/continuous wave, beam profile, laser pulse shaping
- •Guidance Device relative velocity (surface speed), relative acceleration, system accuracy
- •Material substrate geometry, chemical composition, metallurgical, thermo physical & optical properties, powder size, surface tension
- •**Powder Feeder** powder feed rate, inert gas flow rate, nozzle specification, powder stream profile
- •Ambient Properties preheating, shield gas velocity, kind of shield gas, inductive heating

#### $\overline{\nabla}$

#### Process parameters - Physical phenomena

Absorption, conduction, diffusion, melt pool dynamics, fluid convection, gas/melt pool interaction, laser attenuation by powder, rapid solidifaction

#### $\overline{\nabla}$

#### Output parameters - Clad quality

Geometry, microstructure, hardness, cracks, pores, residual stress, surface roughness, microstructure, dilution, surface hardness

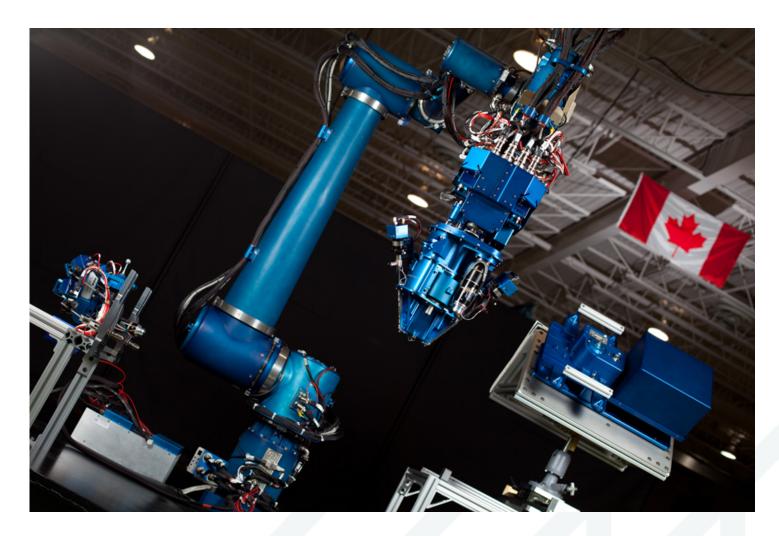
### **Challenges - Environmental**

- Radiation
- Supper high magnetic fields
- High voltage
- Oxygen deficiency
- Fire safety / optical laser
- Powder release in the tunnel
- Recycling

### **Challenges - Operational**

- Difficult to access
- Very limited space
- Distance from the access points
- Time to access and solution to the problem
- Time schedule recovery
- Reliability of technology

### **Challenges - Technological**


- Very delicate equipment, high precision and fine tolerances
- Complex assemblies
- Magnitude from micro to macro levels
- Variety of materials, often difficult to process and repair
- Novel and "unknown" materials

### **Canadian Space Agency**

Outer space

v/s

Enclosed space



### Take away message

- Additive Manufacturing is very fast developing and promising technology
- We don't know exactly which materials and repair tasks we will be having – but we know the potential solution – additive manufacturing

The FCC will not be just a larger-statistics version of the LHC but a game-changer in ... manufacturing technology?

### Thank you for your attention!