

HE-LHC with flat beams

Jose L. Abelleira, Leon Van Riesen Haupt, A. Seryi, E. Cruz Alaniz (JAI-FCC team) Thanks to the CERN FLUKA team 10th April 2018 FCC Week 2018, Amsterdam

- Flat beams are being considered for the FCC-hh.
- They are an alternative to the use of crab-cavities, as they minimize the impact of colliding with crossing angle.
- Flattening the IP parameters ($\beta_x \uparrow$, $\beta_y \downarrow$) can offer some advantages:
 - Reduces the beam-beam parameter
 - Reduces the crossing angle (for the same beam-beam separation, Δ_{in})

$$\Theta = \Delta_{in} \sqrt{\frac{\varepsilon}{\beta_x^*}}$$

Alternative to the use of crab-cavities

- As the crossing angle is reduced:
 - The impact of not having crab cavities is lower
 - The radiation debris is less spread (less radiation in magnets)

- We should design the final focus to be compatible with a flat-beam solution.
- Need to take into account other aspects:
 - Dynamic aperture
 - Beam-beam: long range and head-on behave differently
 - Beam separation must be increased

J.L. Abelleira, 'FCC-hh Final-Focus for Flat-Beams: Parameters and Energy Deposition Studies'.

T. Pieloni et al, 'Beam-beam effects'.

T. Pieloni et al, 'Beam-beam effects', FCC week 2017

OXFORD

HE-LHC with flat beams

- We have explored a range of β* parameters, in order to get some idea of how integrated luminosity works
- Parameters for integrated luminosity:
 - $T_p=3 h$
 - Beam-beam parameter= 0.02
 - Damping time (hor): td=3.6 h
 - L_{int} ~ 700-820 fb⁻¹/year (4.4-5.1 fb⁻¹/day)

Flat beams: integrated luminosity

• Integrated luminosity per day [fb-1]

betx* [m]

bety*[m]

EuroCirCol

Flat beams: integrated luminosity

• Integrated luminosity per day [fb-1]

L_{int} with Crabcavities in parenthesis

bety*[m]

Eur

Crossing angle,

 $\theta = 10\sqrt{\epsilon/\beta}$

L_{int} loss compared to nominal: 7%

6

FCC Week 2018, Amsterdam

HE-LHC with flat beams

Imperial College Royal Holloway ON OXFORD

Flat beams: integrated luminosity

• Integrated luminosity per day [fb-1]

betx* [m]

L_{int} with Crabcavities in parenthesis

bety*[m]

for flat beams

L_{int} loss compared to nominal: 13 %

L_{int} loss compared to nominal: 20 %

Crossing angle

HE-LHC with flat beams

		nominal	flat
Particles per bunch	N [10 ¹¹]	2.2	
Normalized emittance	ε _N [μm]	2.5	
Number of bunches	nb	2808	
Bunch length	σ _ι [cm]	7.55	
IP beta, function, hor	β _x * [m]	0.25	0.4
IP beta function, ver	β _y * [m]	0.25	0.1
Full crossing angle	Θ [µrad]	260	208/312
Beam-beam separation	Δ _{in} [σ]	9.9	10/15
Crab-cavities		Yes	No
Piwinski angle	Φ	1.5	0.94/1.41
Event Pile up		760	730/585
Geom. Luminosity reduction factor	S	0.96	0.72/0.58
Total Beam-beam parameter, initial	ξ ₀ [10 ⁻³]	20	16/11
Initial luminosity	L ₀ [10 ³⁴ cm ⁻² s ⁻¹]	26	25/20
Integrated luminosity (T _p =3h)	L _{int} [fb ⁻¹ /day]	6.2*	5.8/5.2

*4.6 without crab cavities

HE-LHC with flat beams

JAI FCC Week 2018, Amsterdam

HE-LHC with flat beams

Imperial College

 The performance of the flat-beam optics depends heavily on the beambeam separation.

- Flat beams restore some of the luminosity lost with the crossing angle.
- This benefit is diluted if the beam-beam separation is increased.

HE-LHC with flat beams

• Optics solution with the same triplet (betx*=0.4 m, bety*=0.1 m)

Leon Van-Riesen Haupt, 'Experimental Interaction Region Optics for the High Energy LHC' (Thursday)

JAI FCC Week 2018, Amsterdam

HE-LHC with flat beams

London

Flat beams, energy deposition

• Peak doses

EuroCirCol

Almost no effect with this shielding.

Imperial College

Conclusions

- Flat beams are an alternative to the use of crab-cavities.
- They restore some of the luminosity lost with the crossing angle.
- The larger horizontal beam size favours a shorter crossing angle (but minor impact in dose).
- An optimum flat-beam parameter choice is betx*=0.4 m, bety*=0.1 m.
- There is an optics solution with the same triplet.
- Beam separation: we need the exact requirement from beam-beam studies in order to asses the full performance for this option.
- In any case, it is clear that the only case for flat beams is as a back up solution fro the crab-cavities.

Thank you for your attention

HE-LHC with flat beams

Imperial College London Δ UNIVERSITY OF

OXFORD