

Cristian Pira Giovanni Caldarola, Eduard Chyhyrynets,

Vincenzo Palmieri, Fabrizio Stivanello, Ruggero Vaglio

Coating studies on 6 GHz seamless cavities

In the framework of CERN-INFN-STFC Agreement N. KE2722/BE/FCC

FCC Week 2018, Amsterdam, 12th April 2018

Outline

Q-slope problem and LNL approach

Deposition Set Up

Process Parameters

Results

Q-slope problem

LNL Approach

High temperature

Thick films

FCC week 2018 - C. Pira

Thick film motivation

Q-slope is related to local enhancement of the **thermal boundary resistance at the Nb/Cu interface**, due to poor thermal contact between film and substrate

Theoretical model from Vaglio and Palmieri

V. Palmieri and R. Vaglio, *Supercond. Sci. Technol.*, vol. 29, no. 1, p. 015004, Jan. 2016

Thick film motivation

Q-slope is related to local enhancement of the **thermal boundary resistance at the Nb/Cu interface**, due to poor thermal contact between film and substrate

Theoretical model from Vaglio and Palmieri

V. Palmieri and R. Vaglio, *Supercond. Sci. Technol.*, vol. 29, no. 1, p. 015004, Jan. 2016

Thick films increase grain dimensions and RRR

Grain dimension ≈1µm

RRR > 60

EBSD Micrograph of cavity #4, courtesy of Reza Valizadeh (STFC)

High Temperature Deposition Motivation

Thorton SZ Diagram

J.A. Thornton and D.W. Hoffman, Thin Solid Films, vol. 171, no. 1, pp. 5-31, 1989

• CERN (550 °C)

C. Benvenuti et al., *Physica B 197 (1994) 72-83*

• LNL Alpi Linac (300-500 °C)
Stark et al., Proceedings of SRF1997

Hie-Isolde (650 °C)

Sublet et al., Proceedings of SRF2013

6 GHz cavity coating protocol (2 weeks per cavity)

6 GHz cavity

Nb Post Magnetron Target

Quartz sample

Thermocouple

IR Lamp

Process parameters

- Temperature = **550** °**C** (baking 600 °C)
- Base pressure < 2 10-9 mbar (room T)
- Ar Pressure = from 7 10-3 to 5 10-2 mbar
- Current = $1 \text{ A} (0.017 \text{ A/cm}^2)$
- Magnetic Field = 830 Gauss
- Deposition Rate = **2,5 3 nm/s**

Bending of the flange at 650 °C

Deposition parameters optimization

Pressure

Multilayer

Pressure

- Test on kapton foil
- Bending as a function of a pressure

300°C

7 - 10-3 mbar

9 · 10-3 mbar

2 · 10-2 mbar

5 - 10⁻² mbar

Pressure

- Test on kapton foil
- Bending as a function of a pressure

300°C

7 - 10-3 mbar

9 - 10-3 mbar

2 · 10-2 mbar

5 · 10⁻² mbar

Multilayer

Single Layer Thickness = **100**, **300**, **400**, **500** nm

Total Thickness (on the cell) = 70 μ m \$

Deposition Rate = 3 nm/s

Pressure

5 • 10⁻² mbar

7 • 10⁻³ mbar

Zero stress pressure helps to increase accelerating gradient

FCC week 2018 - C. Pira

16

Multilayer

One shot deposition

Multilayer Deposition

Multilayer process helps to increase accelerating gradient

FCC week 2018 - C. Pira 17

Results interpretation

Sputtering pressure and multilayer deposition reduce film stress

• Film stress reduction reduces film peeling and voids dimension at the interface

How to explain low reproducibility?

Cavity surface after spinning

After Mechanical Finishing

With mechanical grinding some areas of the cell are difficult to access

Surface defects after chemistry

Thick films help on Q-slope problem?

Q-slope remains in many cavities...

...but not in all ones!

Conclusions and future actions

- We explored the thick films deposition on Nb/Cu cavities
- Strong Q-slope mitigation on 3 cavities
- The technique is very promising but not mature
- Improvements on cavity preparation process is mandatory
- Film characterization from STFC

8th International Workshop on

Thin Films and New Ideas for Pushing the Limits of RF Superconductivity

October 8-10, 2018

Legnaro National Laboratories INFN Legnaro (Padua) - Italy