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Introduction

CLD - detector model for FCC-ee derived from CLICdet model and optimized

for FCC-ee experimental conditions

~—— CLIC

@ Compact Linear Collider (e~ e™)

@ 3 energy stages:
380 GeV, 1.5 TeV, 3 TeV

@ 156 ns long bunch trains;
20 ms distance between trains
— Power Pulsing of electronics
— Air cooling of Vertex detector

@ CLICdet - proposed detector for
CLIC

FCC-ee

@ Future Circular Collider (e~ e™)

@ 4 energy stages: 91 - 365 GeV
— thinner calorimeter is sufficient

@ Bunch spacing: 20 - 3396 ns

J

Both experiments demand state-of-the-art

detectors with:
@ low-material tracking system
@ precise calorimetery
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Detector constraints from the FCC-ee machine design

@ In order to maximize luminosity final focusing quadrupole chosen to be at 2.2 m
from IP - inside the detector

@ Compensating solenoid to prevent emittance blow-up from detector magnetic field
due to non-zero crossing angle is even closer to the IP
— forward region within 150 mrad is reserved for Machine-Detector Interface

@ Constrains the maximum possible detector magnetic field to 2T
(while the CLIC proposal assumes 4T magnetic field)
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CLD detector layout

\\; *Tracking system
*Calorimetry

*The magnet and muon system
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CLD detector layout
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Fe - Yoke

Steel - HCAL Steel - HCAL

W-Si ECAL
21

Si - Tracker

roernrnorid
CLD model

m—RANR

Full silicon tracking system - provides
>12 hits per track

Fine-grained ECAL and HCAL
optimised for particle flow
reconstruction

Superconducting solenoid is outside of
the calorimeter

Steel return yoke with muon chambers

Forward detector region (< 150 mrad)
is reserved for Machine-Detector
Interface (accommodates LumiCal)

Support structures, cables and
services are included in the model

2.3 . 5.47m
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Tracking system

Vertex detector

x [m]

@ Silicon pixels: .25x25um2 20
@ Single-point resolution: 3 pm

@ 3 double layers in barrel: 15
r=17,37,57 mm

@ 3 double endcap disks per side:
z =160, 230, 300 mm

@ Material budget: 0.6% X, per — ‘ ‘ ‘ ‘

double layer 1

Tracker detector BT L)

05 1.0 15 2.0 zlm.

@ Silicon pixel and microstrips
detector

x_ 30 B
@ Inner Tracker: S
o 3 barrel layers, 7 disks per side kot
@ Quter Tracker: -g 20H B
@ 3 barrel layers, 4 disks per side ﬁ_l
@ Single-point resolution: g I
S 10 =
@ 7 umx90 um T L .
o except 1st IT disk: 5 pm x 5 um = VTX + Tracker + Beampipe
@ Material: 1.1-1.6% X, per layer ol MaEerlaI Bludget ) )
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Calorimetry

Electromagnetic Calorimeter
@ Si-W sampling calorimeter

o cell size 5x5 mm?
@ 40 layers (1.9 mm thick W plates) 7
@ Depth: 22 Xy, 1 A, 20 cm N
Hadronic Calorimeter /=
@ Scintillator-steel sampling _—
calorimeter —

o cell size 30x30 mm?
@ 44 layers (19 mm thick steel plates)
@ Depth: 5.5 X/, 117 cm (inspired by ILD)
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The magnet and muon system

The magnet system 6000

1

@ Superconducting coil outside
calorimeter (90 mm aluminium thick
coil)

@ Return yoke (1.5 m thick steel)

@ The simulation model assumes:

e 2T homogeneous field in the tracker
region

e 1 T field in the yoke barrel
@ no field in the yoke endcaps

4439

The muon system
@ 6 layers of muon chambers (RPC)
e Cell size: 30 x 30 mm?

o0 I
5300 J ‘
220 ! 3980
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Simulation and reconstruction software tools

@ For performance study of the CLD detector for FCC-ee one can benefit from the
fully functional and well tested iLCSoft software used by the CLIC and ILC
community.

@ Detector geometry description and event simulation: DD4hep
@ Event Reconstruction: Marlin

@ Track Pattern recognition: ConformalTracking
@ Particle Flow Reconstruction: PandoraPFA

@ Up-to-date geometry of detector model implemented in Icgeo package:
FCCee_o1.v02

Tracking and calorimetry performances have been studied with full detector simulation
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https://github.com/iLCSoft
https://github.com/AIDASoft/DD4hep
https://github.com/iLCSoft/Marlin
https://github.com/PandoraPFA
https://github.com/iLCSoft/lcgeo/tree/master/FCCee/compact/FCCee_o1_v02

Tracking performance

\’ *Momentum and d, resolutions
X Efficiency for single muons
X Efficiency in complex events
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Momentum and d, resolutions

@ Statistics used: 10k single muons at fixed energy and 6 for each datapoint
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@ Achieved resolutions for 100 GeV muons in the barrel

o momentum resolution: 4x10™° GeV ™"
o transverse impact parameter resolution: < 1um
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Tracking efficiency for single muons

@ Efficiency = fraction of reconstructed particles out of the reconstructable MC particles

@ Reconstructable particles: stable MC particles with p; > 0.1 GeV/c and |cos(8)| < 0.99
which left at least 4 unique hits in tracking system

@ Statistics used: 2M single muons
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@ Fully efficient tracking from 700 MeV over the whole 6 range
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Tracking efficiency for Z-like boson events decaying at rest into light quarks

@ Efficiency = fraction of pure reconstructed particles out of the reconstructable MC particles

@ Pure reconstructed particles: >75% of hits from track are associated to the simulated MC
particle

Tracking efficiency
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@ Fully efficient tracking from 700 MeV
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Tracking efficiency
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Selection cuts
e 10< 0 <170
@ vertex R < 50 mm
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Calorimetry performance

\> *Single particle identification efficiency
* Jet energy resolution
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Single particle identification efficiency

@ Efficiency = fraction of matched reconstructed particles out of the simulated MC particles:
@ reconstructed particle of the same type as simulated MC particle
e angular matching: A8 < 1 mrad and A¢ < 2 mrad
@ energy matching:

- charged particles: |pf*" — p7™°| < 5% pf*" Sample: single particles with flat
- photons: AE < 5 x o(ECal) = 0.75 x VE cos(0) distribution and fixed energy
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@ >99% muon efficiency and 93-95% pion efficiency for E>10 GeV
@ Pion inefficiency due to misreconstruction of particle type
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Single particle identification efficiency

@ Photon merging procedure is used to recover inefficiency due to photon conversion and
electron Bremsstrahlung

@ Pandora parameters were retuned in order to recover some electron inefficiency due to

Bremsstrahlung
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@ > 95% photons and 93-95 % electron efficiency for E>10 GeV
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Jet Energy Resolution

@ Z-like boson events decaying at rest into light quarks (two back-to-back jets)
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@ Jet energy resolution in barrel region:

o 45.5GeV jets: 4-4.5%
e 190 GeV jets: 3-4 %

Jet energy (E;) is measured as a half of total
energy (Ej;) of Z— qq (9=u,d,s) di-jet event

@ Total energy is reconstructed with 1% accuracy: RMSy(E;)  RMSg(E;;) NG

= 2
e 91 GeV: 90.2 GeV meanoy (E ; meangg(E;;
o 380 GeV: 377.0 GeV (£)) oolEs7)
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Summary and Outlook

Summary
@ The CLD detector design for the Conceptual Design Report has been presented

@ Tracking and calorimetry performance studies with full detector simulation
demonstrates excellent overall detector performance

Qutlook

@ Further detector performance simulation studies

o flavour tagging performance
@ overlay of incoherent pairs (in progress) and synchrotron radiation backgrounds

@ Full simulation studies of different physics processes
o software framework and detector model available

@ Engineering studies

@ cooling studies of all subdetectors (no power pulsing)
o ECAL optimisation (technology choices, number of layers)
@ detector opening / maintenance scenarios, impact for detector layout

Thank you for your attention!
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BACKUP
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CLD vs CLICdet dimensions

Overall dimensions of CLIC and FCC-ee detectors

VTX Barrel
VTX Endcap
Tracker radius
ECAL thickness
HCAL thickness
Yoke thickness

MDI (forward region)

Solenoid field

CLICdet
31-60 mm
Spirals
1486 mm
40 layers, 22 X,
60 layers, 7.5 )\,
1989 mm

4 Tesla

RN

CLD
17-59 mm
Disks
2100 mm
40 layers, 22 X,
44 layers, 5.5 ),
1521 mm
< 150 mrad

2 Tesla
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Pion identification efficiency

@ Pion ID efficiency and inefficiency as function of cos(6)

Efficiency

20 GeV pions WORK IN PROGRESS 100 GeV pions WORK IN PROGRESS
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@ High momentum pions more often are misreconstructed as muons in barrel

Oleksandr Viazlo CLD detector model overview 21/18



Electron identification efficiency

@ Electron ID efficiency and inefficiency as function of cos(6)

Efficiency

20 GeV electrons WORK IN PROGRESS

0.8
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O 4 | no energy matching A
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@ Inefficiency for high-momentum electrons can be recovered by better

Bremsstrahlung recovery algorithm
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100 GeV electrons = WORK IN PROGRESS
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Electron identification efficiency (Pandora track-cluster association algorithm)

WORK IN PROGRESS

10 GeV electrons

> r T T T T ]
e 1
Q
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£ o0.8f ]
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04 1 electron PFO -
L 1 pion PFO ]
L other 4
02 - sum (validation) -
O ! PR Sl i kS Pl PR !
-1 -0.5 0 0.5 1
cos(0)
in 10-13% of events no charged PFO is

reconstructed in the event

@ in 3-6% of events fake “pion” is reconstructed
@ in calorimeter transition region a small fraction

track-cluster association algorithm fails to
attach track to cluster (as shown on the right)

of electrons is reconstructed as “pions”
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Conformal Tracking
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Track fitting is done in the conformal space:

& _ Y

U=—_ "5 V= —F5"75
m2_1_y2 x2_’_y2

Cellular automaton is used to perform
straight line search

Hits from the Vertex

@ Conformal tracking is used as the main track pattern recognition algorithm at

CLIC

LCWS presentation about CLIC Conformal Tracking performance
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https://agenda.linearcollider.org/event/7645/contributions/40123/attachments/32387/49200/Leogrande_LCWS2017.pdf




CLD vs CLICdet overall dimensions

Concept CLICdet CLD
Vertex inner radius [mm] 31 17
Tracker technology Silicon Silicon
Tracker half length [m] 22 22
Tracker outer radius [m] 1.5 2.1
Inner tracker support cylinder radius [m]  0.575 0.675
ECAL absorber w w
ECAL X, 22 22
ECAL barrel r,,;, [m] 1.5 215
ECAL barrel Ar [mm] 202 202
ECAL endcap z,;, [m] 231 231
ECAL endcap Az [mm] 202 202
HCAL absorber Fe Fe
HCAL A 7.5 55
HCAL barrel ry;, [m] 1.74 240
HCAL barrel Ar [mm] 1590 1166
HCAL endcap z;, [m] 24 24
HCAL endcap Az [mm] 1590 1166
Solenoid field [T] 4 2
Solenoid bore radius [m] 3.5 3.7
Solenoid length [m] 8.3 74
Overall height [m] 129 12.0
Overall length [m] 114 10.6
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