CLD detector model overview of layout and performances

Oleksandr Viazlo

CERN

10 April 2018

Introduction

 CLD - detector model for FCC-ee derived from CLICdet model and optimized for FCC-ee experimental conditions

CLIC

- Compact Linear Collider (e⁻e⁺)
- 3 energy stages: 380 GeV, 1.5 TeV, 3 TeV
- 156 ns long bunch trains;
 20 ms distance between trains
 - \rightarrow Power Pulsing of electronics
 - \rightarrow Air cooling of Vertex detector
- CLICdet proposed detector for CLIC

Both experiments demand state-of-the-art detectors with:

- low-material tracking system
- precise calorimetery

FCC-ee

- Future Circular Collider (e⁻e⁺)
- 4 energy stages: 91 365 GeV
 → thinner calorimeter is sufficient
- Bunch spacing: 20 3396 ns

- In order to maximize luminosity final focusing quadrupole chosen to be at 2.2 m from IP **inside the detector**
- Compensating solenoid to prevent emittance blow-up from detector magnetic field due to non-zero crossing angle is even closer to the IP
 → forward region within 150 mrad is reserved for Machine-Detector Interface
- Constrains the maximum possible detector magnetic field to 2T (while the CLIC proposal assumes 4T magnetic field)

CLD detector layout

 $\begin{array}{c} & & \\$

3 →

CLD detector layout

Tracking system

- Vertex detector
- Silicon pixels: 25x25µm²
- Single-point resolution: 3 μm
- 3 double layers in barrel: r = 17, 37, 57 mm
- 3 double endcap disks per side:
 z = 160, 230, 300 mm
- Material budget: 0.6% X₀ per double layer
 - Tracker detector
- Silicon pixel and microstrips detector
- Inner Tracker:
 - 3 barrel layers, 7 disks per side
- Outer Tracker:
 - 3 barrel layers, 4 disks per side
- Single-point resolution:
 - 7 μm x 90 μm
 - except 1st IT disk: 5 μm x 5 μm
- Material: 1.1-1.6% X₀ per layer

Oleksandr Viazlo

Calorimetry

- Electromagnetic Calorimeter
- Si-W sampling calorimeter
- cell size 5x5 mm²
- 40 layers (1.9 mm thick W plates)
- Depth: 22 X₀, 1 λ₁, 20 cm
- Hadronic Calorimeter
- Scintillator-steel sampling calorimeter
- cell size 30x30 mm²
- 44 layers (19 mm thick steel plates)
- Depth: 5.5 λ_I , 117 cm (inspired by ILD)

The magnet and muon system

The magnet system

- Superconducting coil outside calorimeter (90 mm aluminium thick coil)
- Return yoke (1.5 m thick steel)
- The simulation model assumes:
 - 2 T homogeneous field in the tracker region
 - 1 T field in the yoke barrel
 - no field in the yoke endcaps

The muon system

- 6 layers of muon chambers (RPC)
- Cell size: 30 x 30 mm²

- For performance study of the CLD detector for FCC-ee one can benefit from the fully functional and well tested iLCSoft software used by the CLIC and ILC community.
- Detector geometry description and event simulation: DD4hep
- Event Reconstruction: Marlin
- Track Pattern recognition: ConformalTracking
- Particle Flow Reconstruction: PandoraPFA
- Up-to-date geometry of detector model implemented in lcgeo package: FCCee_o1_v02

Tracking and calorimetry performances have been studied with full detector simulation

Tracking performance

* Momentum and d₀ resolutions * Efficiency for single muons * Efficiency in complex events

Momentum and d₀ resolutions

• Statistics used: 10k single muons at fixed energy and θ for each datapoint

- Achieved resolutions for 100 GeV muons in the barrel
 - momentum resolution: 4x10⁻⁵ GeV⁻¹
 - $\bullet~$ transverse impact parameter resolution: $<1\,\mu\text{m}$

Tracking efficiency for single muons

- Efficiency = fraction of reconstructed particles out of the reconstructable MC particles
- Reconstructable particles: stable MC particles with $p_T > 0.1$ GeV/c and $|\cos(\theta)| < 0.99$ which left at least 4 unique hits in tracking system
- Statistics used: 2M single muons

• Fully efficient tracking from 700 MeV over the whole θ range

Tracking efficiency for Z-like boson events decaying at rest into light quarks

- Efficiency = fraction of pure reconstructed particles out of the reconstructable MC particles
- Pure reconstructed particles: ≥75% of hits from track are associated to the simulated MC particle

Calorimetry performance

*Single particle identification efficiency *Jet energy resolution

.∃ ▶ ∢

Single particle identification efficiency

- Efficiency = fraction of matched reconstructed particles out of the simulated MC particles:
 - reconstructed particle of the same type as simulated MC particle
 - angular matching: $\Delta \theta < 1$ mrad and $\Delta \phi < 2$ mrad
 - energy matching:
 - charged particles: $|p_T^{truth} p_T^{PFO}| < 5\% p_T^{truth}$
 - photons: $\Delta E < 5 \times \sigma$ (ECal) $\approx 0.75 \times \sqrt{E}$

Sample: single particles with flat $cos(\theta)$ distribution and fixed energy

 $\bullet ~> 99\%$ muon efficiency and 93-95% pion efficiency for E>10 GeV

• Pion inefficiency due to misreconstruction of particle type

- Photon merging procedure is used to recover inefficiency due to photon conversion and electron Bremsstrahlung
- Pandora parameters were retuned in order to recover some electron inefficiency due to Bremsstrahlung

 \bullet > 95% photons and 93-95 % electron efficiency for E>10 GeV

Jet Energy Resolution

Z-like boson events decaying at rest into light guarks (two back-to-back jets)

- - 45.5 GeV jets: 4-4.5 %
 - 190 GeV jets: 3-4 %
- Total energy is reconstructed with 1% accuracy:
 - 91 GeV: 90 2 GeV
 - 380 GeV: 377.0 GeV

Jet energy (E_i) is measured as a half of total energy (E_{ii}) of Z $\rightarrow q\bar{q}$ (q=u,d,s) di-jet event

$$\frac{\operatorname{RMS}_{90}(E_j)}{\operatorname{mean}_{90}(E_j)} = \frac{\operatorname{RMS}_{90}(E_{jj})}{\operatorname{mean}_{90}(E_{jj})}\sqrt{2}$$

Summary

- The CLD detector design for the Conceptual Design Report has been presented
- Tracking and calorimetry performance studies with full detector simulation demonstrates excellent overall detector performance

Outlook

- Further detector performance simulation studies
 - flavour tagging performance
 - overlay of incoherent pairs (in progress) and synchrotron radiation backgrounds
- Full simulation studies of different physics processes
 - software framework and detector model available
- Engineering studies
 - cooling studies of all subdetectors (no power pulsing)
 - ECAL optimisation (technology choices, number of layers)
 - detector opening / maintenance scenarios, impact for detector layout

Thank you for your attention!

A B b A B b

BACKUP

2

Overall dimensions of CLIC and FCC-ee detectors

	CLICdet		CLD
VTX Barrel	31-60 mm	\implies	17-59 mm
VTX Endcap	Spirals	\Rightarrow	Disks
Tracker radius	1486 mm	\Rightarrow	2100 mm
ECAL thickness	40 layers, 22 X ₀	\implies	40 layers, 22 X ₀
HCAL thickness	60 layers, 7.5 λ_l	\implies	44 layers, 5.5 λ_I
Yoke thickness	1989 mm	\Rightarrow	1521 mm
MDI (forward region)		\implies	< 150 mrad
Solenoid field	4 Tesla	\Rightarrow	2 Tesla

크

< ロ > < 同 > < 回 > < 回 > < 回 > <

Pion ID efficiency and inefficiency as function of cos(θ)

• High momentum pions more often are misreconstructed as muons in barrel

Electron ID efficiency and inefficiency as function of cos(θ)

 Inefficiency for high-momentum electrons can be recovered by better Bremsstrahlung recovery algorithm

Electron identification efficiency (Pandora track-cluster association algorithm)

- in 10-13% of events no charged PFO is reconstructed in the event
- track-cluster association algorithm fails to attach track to cluster (as shown on the right)
- in 3-6% of events fake "pion" is reconstructed
- in calorimeter transition region a small fraction of electrons is reconstructed as "pions"

Conformal Tracking

 Conformal tracking is used as the main track pattern recognition algorithm at CLIC

LCWS presentation about CLIC Conformal Tracking performance

CLD detector layout: x-y view

CLD vs CLICdet overall dimensions

Concept	CLICdet	CLD
Vertex inner radius [mm]	31	17
Tracker technology	Silicon	Silicon
Tracker half length [m]	2.2	2.2
Tracker outer radius [m]	1.5	2.1
Inner tracker support cylinder radius [m]	0.575	0.675
ECAL absorber	W	W
ECAL X_0	22	22
ECAL barrel r _{min} [m]	1.5	2.15
ECAL barrel Δr [mm]	202	202
ECAL endcap z_{min} [m]	2.31	2.31
ECAL endcap Δz [mm]	202	202
HCAL absorber	Fe	Fe
HCAL λ_{I}	7.5	5.5
HCAL barrel r_{\min} [m]	1.74	2.40
HCAL barrel Δr [mm]	1590	1166
HCAL endcap z_{\min} [m]	2.4	2.4
HCAL endcap Δz [mm]	1590	1166
Solenoid field [T]	4	2
Solenoid bore radius [m]	3.5	3.7
Solenoid length [m]	8.3	7.4
Overall height [m]	12.9	12.0
Overall length [m]	11.4	10.6

크

▶ < ≞ ▶