



# Ultra-light 2T/4m bore Detector Solenoid for FCCee

- the Solenoid in the IDEA detector -

### Herman ten Kate,

for the FCC detector magnets design team

- 1. Motivation
- 2T IDEA Solenoid
  Conductor, coil windings, Quench protection
- Cryostat
  Optimized conventional, Honeycomb-like
- 4. Conclusion



# 1. Detector magnets for FCC-ee



For FCC-ee two detector designs are proposed:

- a conventional 2T solenoid around the calorimeter, essentially a downscaled CLIC design,
  not further presented here
- a challenging 2T solenoid "ultra-thin & transparent" around the tracker, proposed by the magnet team and accepted as baseline





IDEA detector, innovative thin solenoid around tracker



### Solenoid inside or outside calorimeter



#### **Motivation:**

 Magnetic field is only required in the tracker + muon chambers, but most stored magnetic energy (some 80%) is wasted in the calorimeter space!

# **Obvious savings** when coil is positioned inside:

- Factor ≈ 4.2 in stored energy
- Factor ≈ 2.1 in cost!

**But** design is not obvious and requires R&D and a demonstrator



Solenoid *outside* or *inside* calorimeter?



# Thin & Transparent Solenoid Development



### **Crucial technologies to be developed:**

- High YS Super-Conductor allowing self-supporting cold mass
- Maximum energy extraction at quench to minimize cold mass hot spot temperature
- New ultra-light cryostat design following two routes:
  - high level of thermal insulation and mechanical support through metal foil sealed glass spheres or permaglass under vacuum (not presented here)
  - lightest possible metallic-vacuum cryostat using honeycomb structures or corrugated plate-sandwich panels

1<sup>st</sup> design shows that it is feasible; would be a breakthrough towards lighter and smaller detector magnets, and significant cost savings













# 2. Solenoid for IDEA detector



### Requirements:

- 2T in thin Solenoid with radiation length  $X_0$ <1 in radial direction!
- Radial envelope <300 mm</li>
- Magnetized iron for muon detection

### Strategy:

- Reduce thickness of cold mass
- Reduce thickness of cryostat
- Magnetic flux return by a light return yoke



IDEA detector (International Detector Electron Accelerators), innovative thin solenoid around tracker



# Scaling from ATLAS Solenoid to FCC-ee IDEA Solenoid



#### **ATLAS Solenoid:**

2T in Ø2.51 m x 5.4 m



### **IDEA Solenoid:**

2T in Ø4.4 m x 6

≈ 1.1 x in length and

≈ 1.8 x in diameter





# 2 T "light & thin" solenoid inside Calorimeter



### Self-supporting single layer coil

- high yield strength conductor fully bonded
- thin Al support cylinder for conduction cooling

### **Coil composition:**

- Aluminum (77 vol.%)
- NbTi (5 vol.%) / copper (5 vol.%)
- glass/resin/dielectric film (13 vol.%)

#### **Radiation thickness:**

- Cold mass:  $X_0 = 0.46$ ,  $\lambda = 0.09$
- Cryostat (25 mm Al):  $X_0 = 0.28$ ,  $\lambda = 0.07$

1<sup>st</sup> design shows that achievable is a total  $X_0 = 0.74 < 1$  (at  $\eta = 0$ )



| Property                     | Value |
|------------------------------|-------|
| Magnetic field in center [T] | 2     |
| Free bore diameter [m]       | 4     |
| Stored energy [MJ]           | 170   |
| Cold mass [t]                | 8     |
| Cold mass inner radius [m]   | 2.2   |
| Cold mass thickness [m]      | 0.03  |
| Cold mass length [m]         | 6     |



# **Conductor & Windings**



#### Conductor:

- NbTi/Cu Rutherford cable, Al 0.1%Ni stabilizer, welded Al-7XXX alloy bar reinforcements
- 20 kA operating current, 0.85 H self-inductance
- 6.5 K current sharing temperature (at 3.2 T peak):
- 2.0 K temperature margin at 4.5 K cooling
- 100 MPa combined Yield Strength of Al-Ni + NbTi core + G10 insulation
- 280 MPa local peak stress

### Winding scheme:

- 1 layer coil, 595 turns, conductor length 8.3 km
- Energy over mass density: 24 kJ/kg



Conductor axial thickness: 10 mm (including insulation)



EB welded reinforcement, Sgobba [2010]



# **Quench Protection and Hot-spot temperature**



### Quench protection:

- Relies on high percentage of extraction to reduce cold mass enthalpy
- And relies on quench heaters
- 1000 V peak extraction voltage accepted to yield 76% extraction
- Required conductor RRR> 400
- Normal quench scenario:

$$T_{\rm hotspot}$$
 < 100 K

• Extreme fault scenario hot spot can be improved by using axial quench propagation strips.

Slow dump Fast dump  $I_{op} = 20 \text{ kA}, L = 0.85 \text{ H}$ 



| Scenario                  | Hot spot<br>temperature [K] |
|---------------------------|-----------------------------|
| Regular                   | 87                          |
| Malfunctioning heaters    | 150                         |
| Malfunctioning extraction | 118                         |







# 3. Cryostat – using thin reinforced outer shell



#### Main features:

- CAL is supporting the cryostat
- Cold mass supports to end flanges
- Solid plate inner shell
- Outer shell reinforcement rings to prevent buckling
- Material Al 5083-0

|                                          | Loads |
|------------------------------------------|-------|
| Tracker mass [t]                         | 4     |
| External pressure [MPa]                  | 0.1   |
| Self mass [t]                            | 7     |
| Cold mass + rods thermal shrinkage [kN]* | 215   |

<sup>\*</sup> Initial estimate is 3 times the weight of the cold mass





|                       | Inner shell           | Outer shell | Flanges   |  |
|-----------------------|-----------------------|-------------|-----------|--|
| Material              | AI 5083-O             | AI 5083-O   | AI 5083-O |  |
| Thickness [mm]        | 3                     | 15*         | 12        |  |
| Min thickness [mm]    | 3                     | 13          | 12        |  |
| Max thickness [mm]    | 3                     | 73          | 12        |  |
| Shield thickness [mm] | 3                     | 3           | 3         |  |
| Volume [t]            | 0.5                   | 1.7         | 2 x 0.13  |  |
| Mass [t]              | 1.4                   | 5.2         | 2 x 0.4   |  |
| Total mass [t]        | 7.4                   |             |           |  |
| Stress limits         | According to EN 13458 |             |           |  |
|                       |                       |             |           |  |



# Cryostat option – corrugated outer shell plate



### Option for the external shell, use corrugated plate:

- More uniform thickness seen by particles
- Thickness of outer shell is very dependent on the period and amplitude of the corrugation
- Flat flanges may not be suitable in this case

|                     | External shell | Flanges   |
|---------------------|----------------|-----------|
| Material            | AI 5083-O      | AI 5083-O |
| Thickness [mm]      | 9              | 15        |
| Sin Amplitude [mm]  | 50             | -         |
| Wave period [mm]    | 500            | -         |
| Volume [t] 1        | 1.4            | 2 x 0.16  |
| Mass [t] 1          | 3.8            | 2 x 0.5   |
| Mass cryostat [t] 1 | 6.2            |           |

<sup>&</sup>lt;sup>1</sup> Including thermal shield <sup>2</sup> EN13456 standard







# Cryostat option – use honeycomb-like plate



Option for the external shell, use honeycomb plate or sandwich panels:

 Drastic effective thickness reduction possible by using two separated plates with filling structure in between

When comparing the 4 solutions, honeycomb delivers the best radiation thickness!



Comparison of outer shell solutions and effect on radiation length

|                                    | Uniform plate | Corrugated plate | Reinforcement rings | Honeycomb   |
|------------------------------------|---------------|------------------|---------------------|-------------|
| Plate thickness [mm]               | 20.5          | 7.0              | 4.3                 | 3.5         |
| Radiation length [X <sub>0</sub> ] | 0.23          | 0.11 (mean)      | 0.05 (1.0)          | <u>0.04</u> |
| Height                             | 20.5          | 57               | 92                  | 44          |
| # support rings                    |               |                  | 6                   | -           |
| # corrugations                     |               | 30               | -                   | -           |



### **Conclusion**



- For the FCCee IDEA detector, a conceptual design of a 2T / 4m free bore / 6m long Solenoid surrounding the tracker was developed
- The acceptance of the solenoid depends on the radial space the cryostat needs and effective Al thickness of the total radial build
- A design using 300 mm radial space and 1 Xo radiation length is doable
- Further, aggressive design may lead to another 20% reduction but requiring thickness-reducing engineering driving all sizes to minimum values
- This may also lead to important innovations in thin-coil technology with spin-off to other magnet projects.



