FCCee as a W factory

Paolo Azzurri – INFN Pisa FCC week Amsterdam April 10th 2018

FCCe CDR

work in progress

Di-boson physics

- Measurement of the W mass and width at the WW threshold
- Measurement of W partial widths
- Direct determination of the W mass and width

- Cross section measurements
- Constraints on gauge self-couplings

→ see poster by Jiayin Gu

the FCCee OkuW factory

 \sqrt{s} =160-162 GeV : σ_{ww} =3-5pb

L~4 10³⁵/cm²/s: collect 8/ab in 1 year

30-40 10⁶ WW decays

 $\sqrt{s} = 240 \text{ GeV} : \sigma_{WW} = 16.7 \text{ pb}$

L~0.9 10³⁵/cm²/s: collect 5/ab in 3 years

80 10⁶ WW decays

 $Vs=350-365 \text{ GeV}: \sigma_{WW}=12.0-11.5 \text{ pb}$

 $L^{1.5} 10^{34} / cm^{2} / s$: collect 1.7/ab in 4.5 years

20 10⁶ WW decays

WW threshold

At LEP2 $Vs=161 \text{ GeV } \sigma=4pb$ $\epsilon=0.75, \ \sigma_B=300 \text{ fb}$ $p=0.9: \epsilon p\approx 0.68 \ (@161)$ $\Rightarrow m_W=80.40\pm 0.21 \text{ GeV}$ with $11/pb \ @E_{CM}=161 \text{ GeV}$

$$\Delta m_W = \left(\frac{d\sigma}{dm_W}\right)^{-1} \Delta \sigma$$

m_W from σ_{WW} : sensitivity vs E_{CM}

Max stat sensitivity at $\sqrt{s=2m_W+600}$ MeV = 161.4 GeV

σ_{WW} with YFSWW3 1.18

Vεp with fixed : ε=0.75 and $σ_B=0.3pb$

statistical precision with L= 8/ab \rightarrow $\Delta m_w \approx 0.35$ MeV

need syst control on:

- $\Delta E(beam) < 0.35 \text{ MeV } (4x10^{-6})$
- Δε/ε, ΔL/L < 2 10⁻⁴
- $\Delta \sigma_{\rm R} < 0.7 \text{ fb } (2 \ 10^{-3})$

 $d\sigma_{WW}/d\Gamma_{W} = 0$ at E_{CM}^{\sim} **162.3 GeV** $^{\sim}$ 2m_W + 1.5 GeV Measure oww in two energy points E_1 , E_2 with a fraction f of lumi in E_1

 \rightarrow determine both m_W & Γ_{W}

Determine f, E_1 , E_2 such to mimimise ($\Delta\Gamma_W$, Δm_W) with some target

Evaluate loss of Δm_W precision in the single parameter (m_W) determination wrt scenario of running only at an optimal E_0 =161 point

$m_W & \Gamma_W \text{ from } \sigma_{WW}$

157.1 GeV

7

Scan of lumi fractions

ΔΓ_W

162.3 GeV

ΔΓ_W

ΔΓ_W

Δη_W

Δ

with E_1 =157.1 GeV E_2 =162.3 GeV f=0.4 Δm_W =0.60 $\Delta \Gamma_W$ =1.5 Δm_W =0.56 (MeV)

 Δm_W , $\Delta \Gamma_W$: from fitting both Δm_W : from fitting only m_W

with resonant depolarization spin tune constraints

with E_1 =157.33 GeV E_2 =162.62 GeV f=0.4 Δm_W =0.65 $\Delta \Gamma_W$ =1.6 Δm_W =0.60 (MeV)

 $\rightarrow \Delta \alpha_{\rm S} \approx (3 \pi/2) \Delta \Gamma/\Gamma \approx 0.003$

W decay BR

Winter 2005 - LEP Preliminary

W Leptonic Branching Ratios

Lept universality test at 2% level tau BR ~2.7 σ larger than e/mu \rightarrow FCCee @ 4 10⁻⁴ level

Winter 2005 - LEP Preliminary

W Hadronic Branching Ratio

q/ I universality at 0.6%

→ FCCee @ 10⁻⁴ level

8/ab@160GeV + 5/ab@240GeV → 30M+ 80M W-pairs

→ Δ BR(qq) (stat) =[1] 10^{-4} (rel)

 \rightarrow $\Delta\alpha_{\rm S}\approx (9~\pi/2)\Delta \rm BR\approx 2~10^{-4}$

 \rightarrow Δ BR(e/ μ / τ v)(stat)=[4]10⁻⁴ (rel)

will need much better control of lepton id i.e. cross contaminations in signal channels ($\tau \rightarrow e, \mu$ in the e, μ channels and v.v.)

Flavor tagging would also allow to measure coupling to c & b-quarks (Vcs, Vcb,...)

Direct m_w reconstruction

Studies in the four-jet channel

PYTHIA + CLD simulation

Jet clustering with Durham algorithm

events constrained to form four jets

di-jet pairing : closest to the nominal m_w

Three W mass estimators

- Raw dijet mass
- 4C kinematic jets momenta Rescaling
- Kinematic Fit : minimising jets χ2

→ see details on poster by Marina Béguin

The expected statistical uncertainty on the W mass peak value (Δm_W , stat) is estimated with a **binned max likelihood fit** on the reconstructed m_W distributions, **using templates** with different nominal W mass values. The final expected uncertainty is the result of the combination of the measurements of the two reconstructed masses.

Direct m_w reconstruction

at the W-pair threshold

→ details on poster by Marina Béguin

Smaller dijet mass tends to be off-shell Larger dijet mass is on-shell combined **statistical** uncertainties ΔM_W (4C fit) = 1.02 MeV ΔM_W (4C rescaling) = 1.18 MeV ΔM_W (raw mass) = 1.55 MeV

Direct m_w reconstruction

 ΔM_W (stat) summary with data at different E_{CM}

→ details on poster by Marina Béguin

Optional possibility of using **cone** constraints on jets: the mass resolution is degraded ~20% because of the particle information loss.

This loss is expected to be compensated by a decrease of the FSI systematic uncertainty.

Coming soon:

- 5C kinematic fit with equality of the two dijet masses
- Study of the semi-leptonic WW decay channel

Direct m_w: systematics ?

5/ab@240GeV $\rightarrow \Delta m_w (stat) = 0.5 MeV$

$$M_{\mathrm{Z}}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$$

Is ΔE_{beam} ~1MeV at E_{CM} =240-365 GeV possible? With radiative Z-returns (Z γ) events? Maybe!

 θ , β : jet polar angles and velocities in the CM frame

Table 9: Summary of the systematic errors on $m_{\rm W}$ and $\Gamma_{\rm W}$ in the standard analysis averaged ove 183-209 GeV for all semileptonic channels. The column labelled $\ell\nu q\bar{q}$ lists the uncertainties in $m_{\rm W}$ used in combining the semileptonic channels.

in combining the beamer than								
	$\Delta m_{ m W}~({ m MeV}/c^2)$			$\Delta\Gamma_{ m W}~({ m MeV})$				
Source	$e\nu qar q$	μu q $ar{ ext{q}}$	$ au u$ q $ar{ ext{q}}$	$\ell u { m q} {ar { m q}}$	$\mathrm{e} u\mathrm{q}\mathrm{ar{q}}$	μu q $ar{ ext{q}}$	$ au u$ q $ar{q}$	$\ell u { m q} {ar { m q}}$
$e+\mu$ momentum	3	8	-	4	5	4	_	4
$e+\mu$ momentum resoln	7	4	-	4	65	55	_	50
Jet energy scale/linearity	5	5	9	6	4	4	16	6
Jet energy resoln	4	2	8	4	20	18	36	22
Jet angle	5	5	4	5	2	2	3	2
Jet angle resoln	3	2	3	3	6	7	8	7
Jet boost	17	17	20	17	3	3	3	3
Fragmentation	10	10	15	11	22	23	37	25
Radiative corrections	3	2	3	3	3	2	2	2
LEP energy	9	9	10	9	7	7	10	8
Calibration ($e\nu q\bar{q}$ only)	10	_	-	4	20	-	_	9
Ref MC Statistics	3	3	5	2	7	7	10	5
Bkgnd contamination	3	1	6	2	5	4	19	7

ALEPH 683 /pb ~10k WW events

lepton and jet uncertainties from (Z) calibration data

Triple gauge couplings

anomalies affect: the total rates σ , the production angles $\theta_{\rm W}$ the decay angles θ^* ϕ^*

WWγ **WWZ** $_{v_{e}}$ We ν \mathbf{W}^{T} \mathbf{W}^{T}

→ see details on poster by **Jiayin Gu**

Triple gauge couplings

→ see details on poster by Jiayin Gu

A large benchmark value (0.5) is shown to make the effects of the aTGCs visible. Since the precision reach of the aTGCs are at $O(10^{-3})$ or better, a linear approximation works very well for this analysis.

Triple gauge couplings

A binned chi-square fit is performed to estimate the precision reach of the three aTGCs at the FCCee.

→ see details on poster by **Jiayin Gu**

Only the semileptonic channel, with one W decaying to e or $\boldsymbol{\mu}$ is used.

The chi-square is summed over all bins of the five angles, considering only statistical uncertainties of signal events. The ambiguities in the reconstructions of the hadronic W decay angles (which are "folded") are taken into account.

LEP2 precision: 2-4 10⁻²

current LHC limits Λ/vc<100-400 GeV

Conclusions

FCC ee is a total game-changer for W physics measurements

- No "a priori" walls on the road map to achieve the FCCee goals for W precision measurements but a lot of work, also on the theoretical calculations side
- The WW threshold lineshape is a great opportunity to measure both m_w and Γ_w :
 - take data at $\sqrt{s}=2m_w+1.5$ GeV (**Γ-insensitive**) and $\sqrt{s}=2mw-2-3$ GeV (- Γ off shell)
- Huge potential for other W physics measurements including higher energy data:
- W decay couplings at 10^{-4} level (solve eµ/ τ diff, measure CKM & α_s)
- **Direct m**_W **measurements** shown to be possible also at threshold (ΔE_{beam} <1 MeV) and with better stats at higher energies (Δm_W (stat)what systematic limitations?)
- Initial studies on **gauge couplings** indicate very vast (x100) improvements of the current sensitivities, specially using the higher energy W-pairs (@240-365 GeV)
- Work from experimentalist needed to evaluate with care limiting systematics, study ways to overcome them, and reflect on the detector design consequences: opportunities to contribute
- The potential of FCCee data for EW W measurements is still to be fully unraveled

Backup

acceptance

how do we control acceptance at the 10^{-4} level (0.01%)?

- → aim for the highest possible acceptance and efficiency WP
- lepton tracking reco efficiency (was controlled at the 10⁻³ level at LEP2)
- lepton identification performances
 - @LEP2 10^{-3} level: (T&P with Z): effects on total $\Delta\sigma$ mitigated down to the 2-3 10^{-4} level thanks to $\tau \rightarrow$ e,u channel migrations recoveries
 - would need lepton-id at 10⁻⁴ level for max BR precision
- jet reconstruction and energy calibration
 - @LEP2 1-2% level → 0.1% on Δε:
 - FCCee would need calibration at 0.1% level (10x better) with control data; best possible jet energy resolution helps
- missing momentum scale/resolution: similar to jet energy for qqlv
- lepton isolation
 - @LEP2 control at the $\Delta \epsilon^2$ 10⁻³ level: need to do 10x better
- jet modeling (signal & bkg)
 - was important syst on σ_{WW} @LEP2 (at the 2 10⁻³ level)

impact of theoretical uncertainties will hopefully not be limiting but work is needed to reach the target 0.2 10⁻³ precision level

background control

2-fermion : $\tau\tau$, qq

4-fermion : $\gamma\gamma \rightarrow \tau\tau$, $II\nu\nu$, Zee, Wev

some 4f bkg is identical to the signal final state → CC03-4f interferences

decay	efficiency	purity	bkg [LEP1996]
lvlv	70-80%	80-90%	50fb $(\tau\tau,\gamma\gamma\rightarrow\tau\tau,Z\gamma^*\rightarrow\nu\nu II)$
evqq	85%	~90%	30fb (qq, Zee, Zγ*) -10fb (Weν)
μνηη	90%	~95%	10fb (Ζγ*,qq)
τναα	50%	80-85%	50fb (qq, Zγ*)
qqqq	90%	~90%	~ 200fb (qq (qqqq,qqgg))

measure directly the **backgrounds** with very different S/B levels at different E_{CM} points

concern is mostly on the four-jet background

measure forward electrons (θ≥0.1 rad) for

Zee Wev : determine forward pole $d\sigma/d\theta$ and WW interference effects

acceptance down to θ =0.1 [cos θ = 0.995] would also cover forward jets

limiting correlated systs can cancel out taking data at more E_{CM} points where

$$\left(\frac{d\sigma}{d\Gamma_W}\right)^{-1} \left(\frac{d\sigma}{dm_W}\right)^{-1} \qquad \left(\frac{d\sigma}{dm_W}\right)^{-1} \sigma \left(\frac{d\sigma}{d\Gamma_W}\right)^{-1} \sigma$$

differential factors are equal