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Introduction

• Goal  identify lattice options with acceptable magnet field at top energy and sufficient 

dynamic aperture (DA) at injection energy

• DA challenge  expected reduced field quality of arc dipoles at injection energy due to 

Nb3Sn conductor and potentially large swing between injection and collision energies

• Several lattice options with different arc cell design

• Injection energy options: 450, 900, 1300 GeV

• DA calculations with non-linear field errors in arc dipoles at injection energy

- No errors

- Systematic field errors

- Systematic and random errors

- Correction of b3 and b5 field errors

- Quick look at error sensitivity in view of a better DA

More talks on lattice details and DA study from the HE-LHC team on Thursday 
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Lattice options and parameters at E = 13.5 TeV

LHC design Older HE-LHC designs Latest most realistic designs

LHC V6.503

23 × 90°

HELHC V3.1a

24 × 60°

HELHC V3.1a

20 × 90°

HELHC V0.3

18 × 90°

HELHC V0.3

23 × 90°

Cells per arc 23 24 20 18 23

Cell phase advance, deg 90 60 90 90 90

Cell length, m 106.90 102.90 124.80 137.23 106.90

Dipole length, m 14.3 13.56 12.625 13.95 13.83

Dipoles per cell 6 6 8 8 6

Total main dipoles 1232 1280 1408 1280 1232

Arc dipoles fill factor 0.803 0.791 0.809 0.813 0.776

Dipole B, T 16.06 16.30 15.92 15.85 16.61

Arc quad B, T/m 404.8 288.2 334.8 336.1 348.1

Sextupole B, T/m2 4883 1891 3020 1639 2043

Max/Min arc b function, m 184 / 29 177 / 60 212 / 37 230 / 41 177 / 32

Max/Min arc dispersion, m 2.03 / 0.96 3.78 / 2.28 3.01 / 1.45 3.80 / 1.76 2.20 / 1.08

Tune, x/y 64.28 / 59.31 46.28 / 45.31 54.28 / 53.31 49.28 / 47.31 62.28 / 59.31

Momentum compaction 3.22 10-4 6.50 10-4 4.75 10-4 5.82 10-4 3.53 10-4

Natural chromaticity -86 / -82 -58 / -59 -74 / -75 -67 / -69 -85 / -85

CM energy for 16 T dipole 26.90 26.50 27.13 27.25 26.00

• Quad and sextupole strengths are within FCC limits (sextupole field is shown for injection b* and w/o b3 errors)

• Quad & sextupole lengths in V0.3 are adjusted for optimal field
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Arc cell options

24x60 cell 20x90 cell 

18x90 cell 23x90 cell 

Lower number of cells

for against

lower dipole field, 

weaker quads and 

sextupoles

larger beta, dispersion 

and beam size 

stronger effects of 

field errors on DA

Smaller phase advance per cell

for against

weaker quads and 

sextupoles

larger dispersion 

impact of errors on 

off-momentum DA

2p*n phase advance per periodic arc (e.g. 

20x90, 24x60) helps with compensation of 

systematic arc errors

Higher injection energy  Smaller 

emittance, momentum spread and beam size, 

better field quality (at 1.3 TeV)  larger DA (s) 
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HE-LHC dipole field quality at 450, 900, 1300 GeV,

version 24-JAN-2018

• Large non-linear field errors in 16 T dipole at injection 

energy is a concern for DA

• b3s = -35 / -55 / -40 ;     b3u/r = 10 / 4 / 3 ;             

b5s = 8 / 8 / 4    at 450 / 900 / 1300 GeV

• Also feed-down from b5 to b4 may be large in options 

with larger beam size and at lower injection energy

S.I. Bermudez, et al 

for wire filament 

size of 20 mm
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DA tracking set-up

• LEGO code (Y. Cai, SLAC-PUB-7642,1997)

• DA is calculated at IP, normalized to beam s

• Short term tracking with 1024 turns (should be ok for comparison study)

• compared to 104 turn tracking for a few cases

• 21 X-Y angles, 10 seeds of random errors

• Non-linear field errors (n>2) in arc dipoles; no other errors

• Random errors are increased by ≈20% compared to FQ table to compensate for missing 

uncertainty errors in LEGO

• Normalized emittance = 2.5 mm-rad

• Chromaticity corrected to +3 using arc sextupoles

• Synchrotron oscillation included

• RF voltage and initial momentum offset in this study

Energy, GeV 450 900 1300

Voltage, MV 14.0 12.1 10.5

Dp/p offset, 10-4 9.0 6.2 5.5
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b3 and b5 corrector schemes

• b3 correction: nominal scheme with one b3 corrector per dipole

• Alternate scheme with two b3 correctors per dipole  better local correction and weaker correctors

• One corrector family is used (more families may improve the correction)

nominal: one b3 corrector per dipole

two b3 correctors per dipole

• b5 correction: scheme with three b5 correctors per periodic arc cell

• Initial study: no b5 correctors, but the FQ b5s is reduced to 30% of its value to apply some correction

• One corrector family is used
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Minimum DA without errors

Dp/p = 0 Dp/p offset

• Largest DA in 20x90 and 24x60 options – these designs have 2pn phase advance per arc providing 

compensation of the arc sextupole effects

• Smaller DA of 23x90 V0.3 lattice compared to the nominal LHC. Some differences: 2 units smaller integer 

X-tune, 2 units smaller tune split, different IR designs 
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Systematic field errors, one b3 corrector per dipole

Dp/p = 0 Dp/p offset

• Best DA in 23x90 option

• DA is maximum at 1.3 TeV due to the smaller beam size and smaller errors

• Impact of momentum dependent effects

• no b5 correctors, b5s reduced to 30%
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Systematic field errors, one vs two b3 correctors per dipole

Dp/p offset Dp/p offset

• Small DA improvement with two b3 correctors per dipole

• b3 corrector gradient B at 1.3 TeV reaches ~5600 T/m2 in the nominal corrector scheme (half-strength in 

two corrector scheme)

one b3 two b3
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Systematic + random field errors, two b3 correctors per dipole

Dp/p = 0 Dp/p offset

• Acceptable DA in 23x90 option (best) at 1.3 TeV and in 20x90 option

• Other options and 450 and 900 GeV energies have DA <10s

• no b5 correctors, b5s reduced to 30% 
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Comparison to longer term tracking

• 1024 turns vs 10 times longer tracking

• for 23x90 lattice at 1.3 TeV, with two b3 correctors per dipole

• Without errors  75s DA at 103 turns vs 69s at 104 turns

• With dipole non-linear field errors  minimum DA (~15s) is almost unchanged at 103 and 104

turns, but maximum DA is reduced by a few s’s

• No large DA reduction, acceptable for comparison study

with errors, 1k turnsno errors, 1k vs 10k turns with errors, 10k turns
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DA with b5 correctors

• Initial study was done with a 

“dummy” b5 correction – w/o b5 

correctors but with b5s reduced to 

30% of FQ value

• Use b5 correctors in the 18x90 and 

23x90 options and compare vs the 

DA of “dummy” correction at 1.3 TeV

• Performed with systematic and 

random dipole field errors, and 

nominal b3 correction scheme

• Small DA improvement with the b5 

correctors vs the “dummy” scheme

• The DA of 18x90 option needs 

further improvement

18x90 b5s*0.3 no corr 18x90 b5 correctors

23x90 b5s*0.3 no corr 23x90 b5 correctors

16s

10s
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Field quality and DA improvement

18x90 b3s=-40 18x90 b3s=-20

23x90 b3s=-40 23x90 b3s=-20

• A quick look shows DA improvement 

from 10s to 13s in 18x90 option and 

a better vertical DA in 23x90 option, 

when b3s is reduced from -40 to -20 

at 1.3 TeV

• Performed for short-term tracking 

with systematic and random field 

errors in arc dipoles, one b3 

corrector per dipole, and b5 

correctors

• A systematic study of DA sensitivity 

to dipole field errors should be 

performed to develop a strategy for 

a target FQ (with feedback from 

magnet group)

17s

13s

16s

10s
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Conclusions

• Dynamic aperture of four lattice options with non-linear field errors in arc dipoles has been compared 

using short-term tracking

• The largest DA (~16s) is achieved with the 23x90 option at 1.3 TeV (smaller beam size  reduced 

effects of field errors); however it requires a stronger dipole, thus limiting the collision energy

• The DA of 18x90 option requires further improvement (e.g. better field quality); this option’s advantage 

is the lowest dipole field compatible with 27 TeV

• The 20x90 option could be also considered, as it showed an intermediate performance between the 

23x90 and 18x90 options for both the DA and the dipole field

• Compensation of systematic b3 and b5 errors using b3, b5 correctors is needed for maximum DA

• The 450 and 900 GeV injection energy options so far did not provide sufficient DA due to larger field 

errors and beam size

• DA improvement may be possible with optimization of the lattice and field quality specifications

• These results may be somewhat optimistic due to short-term tracking  long-term tracking studies 

should be performed for the selected options

• There are more errors to be added to the simulations (other magnets, misalignment, …)  more impact 

on DA to be studied
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Thank you!
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Sensitivity to individual systematic errors

• 18x90 lattice option

• DA with one systematic bn error at 

a time (no other errors)

• Two cases for b3s and b5s: with 

and w/o correctors

• In case of b3s w/o b3 correctors, 

the linear chromaticity is corrected 

using main sextupoles  but DA is 

very poor  b3 correctors are 

needed to locally correct the errors

• Similarly, with only b5s error and 

without b5 correctors the DA is 

already tight  b5 correctors 

should be used


