Track seeding and pileup studies

FCC Week 2018

Apr 12, 2018 Valentin Volkl Univ. Innsbruck / EP-SFT - CERN

Many Thanks to Felice Pantaleo and the CMS Patatrack-group!

© Andi Salzburger

FCChh Pileup - Generator Level

- Overlay from Min. Bias. Pool <u>supported</u>
- ~ 400 Particles / MinBias Event (280 charged)

Pileup events at 100 TeV

- Vertices lie extremely dense at 1000 PU
- Time spread of approx. 180 ps similar to HL-LHC

FCChh Pileup - Detector Level

- Note that ideal readout is assumed -
 - See J. Hrdinka's talk for Digitization developments

Out of Time Pileup

Radial Distance [mm]

Tracker Hits

Out of Time Pileup: Structure of a Min. Bias Event

Distance from Origin [mm]

Track Seeding: tricktrack::HitChainMaker

- 3-layer combinatorial seeding available for some time already in FCCSW
 - Most critical part of track reconstruction, worst scaling with pileup
- Cellular Automaton based approach performs well in CMS
 - 3 stage strategy:
 - Hit Doublet Creation (very simple geometrical track candidate rejection)
 - Connecting doublets to CA Cells (simple geometrical track candidate rejection)
 - Evolve cells N times to find N-sized tracklets

Allows to add time filters at the Doublet level!

hits on barrel layer

Tracker v3.0.3 Seeding Layers

. . .

CA Seeding - Min Bias Event Display

Geometrical Filters - Triplet Level

Track originates from beamspot

• Track is aligned in r-z

HitChainMaker CPU performance

Intel(R)
Core(TM)
i7-6700 CPU
@ 3.40GHz

HitChainMaker CPU performance

Computational Complexity $\mathcal{O} \text{ (found tracklets)}$ $\mathcal{O} \left(\frac{1}{1 + \text{fakerate}} \cdot \text{hits} \right)$

Intel(R)
Core(TM)
i7-6700 CPU
@ 3.40GHz

Single Particle Seeding efficiencies

Delphes Parametrisation

Extending the Seeding up to Eta 6

Seeding layers need to include **all** forward layers!

Track Parameter Estimation with Riemann Fit

- TrickTrack includes an implementation of a Riemann Fit used to estimate track parameters
- Resolution for quadruplets limited, but sufficient to seed Kalman Filter

Min. Bias Seeding Efficiencies

Hit Doublet classifiers

-0.75

-1.00

Hit Pair filtering is hard, but most powerful in reducing combinatorics

doublets

Additional discriminating features - Timing, Cluster shape, can help

Time difference

of doublets [ns]

difference of doublets [mm]

Computing Gains with Time informations

- Full 1000 PU events cannot currently be fully reconstructed
 - Not even with naive time filtering
- More sophisticated metrics or smart reconstruction strategy needed

Computing Gains with Time informations

Naive BDT classifier to improve metric

Conclusion

- Implemented track seeding and tracking sw infrastructure
 - Cellular Automaton / HitChainMaker
 - RiemannFit
- Validated by use in CMS, good potential for exploiting parallelism
 - Being ported to CUDA/GPUs in CMS
 - https://github.com/HEP-SF/TrickTrack
- Reconstruction with 1000 Pileup extremely complex
 - Additional discriminants such as timing information needed
- Complements ACTS developments