

Status of track reconstruction with ACTS in FCCSW

Julia Hrdinka (TU Wien) On behalf of the ACTS & FCCSW Team

The right tools at the right time...

The right tools at the right time...

The tracker layout mainly optimized by applying:

- Approx. analytical approach: tkLayout (CMS)
- Numerical approach: Mathematica
- + using B field maps & Fluka simulated fluence map
 - =>See Talk Z.Drasal from the morning

The right tools at the right time...

Detector setup in tracking package ACTS

- Full DD4hep geometry
- Automatically translated into tracking geometry
 - Inner detector
 - Barrel of current Muon System implementation (DD4hep description from K. Terashi)
 => also chamber geometry can be supported
 - Barrels of Calorimeter material
 - Next step: implement end caps

Detector setup in tracking package ACTS

- Full DD4hep geometry
- Automatically translated into tracking geometry
 - Inner detector
 - Barrel of current Muon System implementation (DD4hep description from K. Terashi)
 => also chamber geometry can be supported
 - Barrels of Calorimeter material
 - Next step: implement end caps

Detector description inside ACTS

Sensitive and material hits seen by fast simulation

Magnetic field implementation in FCCSW

Magnetic field service

- > Allows non uniform magnetic field
- Internally uses ACTS magnetic field implementation
- Can read field map from root/csv file
- Linearly interpolates field value within grid cell
- Full simulation support in Geant4 (geant4 wrapper)
- Standalone tests implemented
- Tests inside full simulation ongoing

 \Rightarrow Open PR – will be merged after FCC week

 \Rightarrow Allows to study both magentic field options in detail

=>Written out during interpolation inside FCCSW

Status in FCCSW

Working Currently in progress Not started

Close to realistic detector response

Translate hit into measurement

Depends on technologies used for specific detector

- Use purely geometric approach
- ➤ Flexible
 - Mimic analogue/digital readout
 - Can take lorentz angle into account
- > Can use either full or fast simulation hits as input
- ➢ Uses the granularities of FCChh reference design v3.03

Close to realistic detector response

Translate hit into measurement

Depends on technologies used for specific detector

- Use purely geometric approach
- ➢ Flexible
 - Mimic analogue/digital readout
 - Can take lorentz angle into account
- > Can use either full or fast simulation hits as input
- ➢ Uses the granularities of FCChh reference design v3.03
- \Rightarrow Allows to test digital/analogue readout
- \Rightarrow Allows to study readout of detector
- \Rightarrow First studies using digitzation in second part of talk

Close to realistic detector response

Translate hit into measurement

Depends on technologies used for specific detector

- Use purely geometric approach
- ➢ Flexible
 - Mimic analogue/digital readout
 - Can take lorentz angle into account
- > Can use either full or fast simulation hits as input
- ➢ Uses the granularities of FCChh reference design v3.03
- \Rightarrow Allows to test digital/analogue readout
- \Rightarrow Allows to study readout of detector
- \Rightarrow First studies using digitzation in second part of talk

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

the charge-weighted approach :

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

the charge-weighted approach :

Resolution depends on:

- readout granularity
- Incident angle (i.e. cluster shape)

Cluster errors (residuals to truth position) => realistic resolution estimate

Measurement resolutions I

Output of single particle simulation as input to error parameterization

first estimate cluster sizes per layer,

e.g. innermost Pixel layer with $l_0 \times l_1 = 25 \ \mu m \times 50 \ \mu m$ pixelization

Resolutions for
different cluster sizes
Obtained with fast
track simulation using
tracking geometry

Measurement resolutions II

Output of single particle simulation as input to error parameterisation

second, create resolution plots for different cluster sizes

e.g. innermost Pixel layer with $I_0 \times I_1 = 25 \ \mu m \times 50 \ \mu m$ pixelization

Physics motivated studies using ACTS and FCCSW

Pattern Recognition

Two main challenges for the detector @ 100 TeV collider

- ➢ Pile up of 1000
 - How big is the channel occupancy?
 - Can we do pattern recognition at such harsh environment?
- \Rightarrow Studied with full simulation
- \Rightarrow First application of digitization
- Colliminated Jets
 - Can we resolve two close by tracks?
 - On top of 1000PU

Channel Occupancy I

Full simulation, 1000 Pile up Event, minBias, const BField, primaries only

Julia Hrdinka - Status of simulation track reconstruction with ACTS in FCCSW

Julia Hrdinka - Status of simulation track reconstruction with ACTS in FCCSW

Channel Occupancy II

Full simulation, 1000 Pile up Event, minBias, const BField, secondaries included

Julia Hrdinka - Status of simulation track reconstruction with ACTS in FCCSW

Channel Occupancy - barrel layers

Barrel Layer	All particles (mean±σ)	Prim. Only (mean±σ)	Calculation(*) (max)
1	1.79 ± 0.23	0.73 ± 0.10	0.45
2	0.43 ± 0.07	0.13 ± 0.03	0.11
3	0.20 ± 0.03	0.05 ± 0.01	0.05
4	0.11 ± 0.02	0.02 ± 0.01	0.02
5	0.30 ± 0.04	0.03 ± 0.01	0.08
6	0.16 ± 0.03	0.02 ± 0.00	0.04
7	0.10 ± 0.02	0.01 ± 0.00	0.02
8	0.05 ± 0.01	0.01 ± 0.00	0.01
9	5.6 ± 1.95	1.09 ± 0.82	0.75
10	3.57 ± 1.62	0.69 ± 0.61	0.43
11	2.32 ± 1.27	0.46 ± 0.44	0.27
12	1.61 ± 1.04	0.37 ± 0.47	0.21

 \Rightarrow Discrepancies seen to calculations \Rightarrow Need to understand why

(*)Calculated by Z.Drasal using Fluka rates (see)

Channel occupancy – layer with highest mean

Difficulty of pattern recognition

Propagate error ellipse through detector (with material)

- Use measurements obtained from primaries only
- Calculate if measurement is disturbed by other measurement in 95% if error ellipse for one layer
- Accumulate over all layers
- ⇒ Obtain probability for backround contamination along one track
- ⇒ Material induced confusion big enough to surpress you to 0 efficiency

Difficulty of pattern recognition

Propagate error ellipse through detector (with material)

- Use measurements obtained from primaries only
- Calculate if measurement is disturbed by other measurement in 95% if error ellipse for one layer
- Accumulate over all layers
- ⇒ Obtain probability for backround contamination along one track
- \Rightarrow Material induced confusion big enough to surpress you to 0 efficiency

Difficulty of pattern recognition

Propagate error ellipse through detector (with material)

- > Use measurements obtained from primaries only
- Calculate if measurement is disturbed by other measurement in 95% if error ellipse for one layer
- Accumulate over all layers
- ⇒ Obtain probability for backround contamination along one track
- \Rightarrow Material induced confusion big enough to surpress you to 0 efficiency
- \Rightarrow Need to redo with
 - Kalman filter
- \Rightarrow Finally want to
 - compare with results obtained with
 - analytical approach +
 - FLUKA simulation by
 - Z.Drasal

In-Out: Bkg contamination prob. in 95% area of 2D error ellipse accumulated accross N layer

Sensitive hits 1 TeV bjets – 1 Event

Full simulation, secondaries included, no pile up, const Bfield

Merged Cluster Rate

Full simulation, 1000 Pile up minBias + 1TeV bjets, secondaries included

Merged Cluster Rate

Conclusion & Outlook

- ➢ First studies could be done using FCCSW full simulation & ACTS
- Continue integration & testing in FCCSW
- Integrate fast track simulation & track fitting into FCCSW
- > Build track segments with trick track (see V. Volkl) and fit with ACTS
- Continue studies with further details and statistics for CDR
- Find reason for high occupancy rates
- Study double track resolution from generated jets using Jet algorithm

Fast simulation update

Parametric hadronic interactions switched on

- hadronic interaction vertices
- stable particle vertices Pythia8

Cluster/error parameterisation

Output of single particle simulation as input to error parameterisation

second, create layer resolution maps, innermost Pixel layer

summary:

Cluster/error parameterisation

Use as input for ACTS clusterisation

- > auto-created root files read back into ACTS to fill cluster error
- check pull distributions

Hits from different particles per Module

1000 PU Minbias + bjets

1000 PU Minbias

12.04.2018