PAPAS The Parametrized Particle Simulation

Colin Bernet (IPNL)

FCC Week, Amsterdam

April 2018

Particle Flow:

reconstruct all stable particles

- charged hadrons
- photons
- neutral hadrons
- electrons, muons

Then make jets, taus, MET, ...

Particle Flow is the Future

Need to resolve the energy deposits of nearby particles

Future detectors designed for this: pixel calorimeters

FCC detector design: Need detailed fast simulation of the particle flow

Papas

- Simple geometry (cylinders)
- **Material**
 - for hadron shower in ECAL
- Energy resolution Response
- Acceptance
 - thresholds
- Cluster size R
 - models calorimeter granularity

Papas: Particle Flow

CLD : Tracker

Very small amount of material

→ using these efficiencies and resolutions for charged hadrons, e, mu

Emilia Leogrande

https://indico.cern.ch/event/638354/contributions/2626453/attachments/ 1478996/2292486/FCCeeDetDesMeeting.pdf

CLD : Calorimeters, Leptons

	ECAL	HCAL
n lambda_l	1 CLIC CDR p. 70	n.a.
Cluster size	1.5 cm (EM) 4.5 cm (had)	10 cm CLIC CDR Fig. 6.12
Resolution	$rac{0.167}{\sqrt{E}} \oplus 0.011$ $$ CLIC CDR p. 123 $$	$\frac{0.5}{\sqrt{E}} \oplus \frac{0.5}{E} \oplus \frac{0.0234}{\text{CLIC CDR Fig. 6.11}}$
Acceptance	η <2.76 E. Leogrande	η <2.76
Thresholds	0.2 MeV	1 GeV
	e	mu
Resolution	as for charged hadrons	as for charged hadrons
Efficiency	95% for p _T >5 GeV	100% for E>7.5 GeV CLIC CDR Sec. 8.1.1

$Z \to d\bar{d}$

$Z \to d \bar d$ mass reconstruction

Invariant mass of all reconstructed particles No jet reconstruction

Validation in a physics channel

- exclusive 4 jet reconstruction,
- rescale jet energies for p4 conservation
- reject combinations with di-jet masses compatible with ZZ and WW
- select best combination for $H \rightarrow bb$ (b tag)

Software

- Papas available in:
 - python
 - fast prototyping and debugging
 - extreme flexibility
 - ~5-10 events / s
 - https://github.com/HEP-FCC/heppy
 - C++ (standalone and FCCSW) Alice Robson
 - 100 150 events / s
 - <u>https://github.com/HEP-FCC/papas</u> <u>https://github.com/HEP-FCC/FCCSW</u>

Summary

- Papas is a new fast simulation program
- Features a full particle flow algorithm
- Models precisely the influence of the detector on particle flow reconstruction
- First studies based on papas:

– C.B. : Higgs coupling measurements at FCC-ee