Dark Matter: disappearing tracks

Ryu Sawada, Shoji Asai, Masahiko Saito, Koji Terashi

ICEPP, the University of Tokyo

WIMP DM YES or NO?

- Neutralino is a dark matter candidate
 - Dark matter mass bound from the relic density.
 - wino ~ 3 TeV
 - higgsino ~ 1 TeV arXiv:1606.00947

mass degeneracy

$$m_{\chi^\pm}-m_{\chi^0}\sim$$
 166 MeV (Wino LSP) ^{squark coan.} $m_{\chi^\pm}-m_{\chi^0}\sim$ 355 MeV (Higgsino LSP)

3

 $m_{\tilde{\gamma}}$ [TeV]

2

thermal WIMP

· Can not be discovered by normal $E_{T^{miss}}$ + jets SUSY searches (decay products too soft) $\cdot \sqrt{s} = 14$ TeV is not enough to reach wino mass sensitivity of 3 TeV

Disappearing track signature

- Wino or higgsino LSP leads meta-stable chargino
- $c\tau \sim 6$ cm (wino), 7 mm (higgsino) \rightarrow directly detectable
 - chargino tracks disappear in the tracker.

- ATLAS limit for wino (higgsino) LSP : 460 GeV (152 GeV)
- CMS limit : 715 GeV @ τ = 3 ns, ~ 310 GeV @ τ = 0.2 ns (wino LSP) CMS-PAS-EXO-16-044

Does FCC have a potential to definitively confirm/exclude that a thermally produced WIMP exists ?

Configurations

Combinations of two track reconstruction, two detector layout and two minimum-bias QCD model configurations

4

Analysis Overview

- Require a high p_T ISR jet and large E_T^{miss}
 - In ATLAS, jet pT>140, E^{miss} > 140 GeV •
 - Threshold optimised for each configuration •

Example:	5-layer tracks, $ \eta < 1.9$, $\mu = 500$, 30 ab ⁻¹ non-diffractive model, higgsino		
	Default layout	Alternative layout	
1st jet pT [TeV]	2	8	
E ^{rmiss} [TeV]	1	9	

- Require "disappearing track"
 - Defined as having no associated hits after a layer ۲
 - Required at least 4 or 5 hits in a track. ٠
 - Only the central ($|\eta| < 1.9$ by default) to suppress BG. •

	Electrowe	eak channe	1	Strong	chann
Number of observed even	nts with	$p_{\mathbf{T}} > 100$	GeV in	$high-E_T^n$	^{hiss} re
	9			2	
Number of expected even	nts with	$p_{\mathbf{T}} > 100$	GeV in	$high-E_T^n$	$\stackrel{\rm niss}{,}$ re
Hadron+electron background	6.1	± 0.6		1.78	± 0.3
Muon background	0.15	± 0.09		0.05	± 0.0
Fake background	5.5	± 3.3		0.1	± 0.4
Total background	11.8	± 3.1		1.9	± 0.4
p_0	0.5			0.47	
Observed $\sigma_{\rm vis}^{95\%}$ [fb]	0.22			0.12	
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	0.28^{+}_{-}	-0.11 -0.08		$0.12^+_{}$	$0.07 \\ 0.04$
Number of expected signal	events w	ith $p_{\mathbf{T}} >$	100 $\overline{\mathrm{GeV}}$	7 in high	$-E_{\mathbf{T}}^{\mathbf{miss}}$
	13.5	± 2.1		5.6	± 0.8

electron or a pion from 1-prong τ

decay.

- Dominant at µ=500 pileup Unphysical background
 - Random combination of hits
 - The rate depends on the detector layout, pileup etc.

Sensitivity estimation

- Signal
 - E^{Tmiss} and jet pT higher than thresholds optimised for each configuration.
 - Assume we can reconstruct a signal track if a chargino go through at least 4 or 5 silicon layers before the decay.
- **Background** (detailed in following pages)
 - Physical BG
 - Scale the observed BG yield in ATLAS.
 - Unphysical BG
 - Estimate using a simple track reconstruction.

- Physical background
 - Background yield is estimated by scaling the ATLAS data (36 fb⁻¹) with the integrated luminosity, the cross-section, the kinematical selection efficiency of W→ℓν (main BG) and the scattering probability (calculated from the ratio of the material in FCC to that in ATLAS)

$$N_{BG}^{FCC} = N_{BG}^{ATLAS} \times \frac{L^{FCC}}{L^{ATLAS}} \times \frac{\sigma}{\sigma}^{FCC} \times \frac{f^{FCC}}{f^{ATLAS}} \times \frac{p^{FCC}}{p^{ATLAS}} \times \frac{\rho}{\rho}^{FCC} \times \frac{\rho}{\rho}^{ATLAS} \times$$

Inner detector material

Inactive volumes (support, circuits etc) are not defined in FCC geometry yet.
We assumed the same Pixel v.s. Support material ratio.
→ we will follow up once support volumes are defined

Fake-track background

- · 10 times lower BG with a tight pseudo rapidity cut ($|\eta| < 1$).
- · BG rates with 4-layer tracks are too high.
- \rightarrow Expected sensitivities are calculated with 5-layer track configuration.

30% uncertainty in BG yield is assumed

Band : only non-diffractive process (lower)

with diffractive processes (upper)

- \cdot With the alternative layout, 3 TeV wino can be discovered.
- \cdot 1 TeV higgsino is difficult with this configuration.

30% uncertainty in BG yield is assumed <u>Modifications to discover 1 TeV higgsino</u>

1) Decrease the pileup down to 200

 $20^{\text{FCC-hh}}$, $\sqrt{s} = 100 \text{ TeV}$, $30_{\text{a}}ab^{-1}$ Discovery significance 18 Default layout (#1) **16**⊢ Alternative layout (#3) <u> = 20014 12 Pure higgsino 10 8 6 2 0 800 1000 1400 1200

Chargino mass [GeV]

2) Tight cut on the pseudorapidity (< 1.0)

Band : only non-diffractive process (lower) with diffractive processes (upper)

Key points in the layout

- Five space points are needed to reduce the fake-track rate.
- For the signal acceptance, a smaller radius of the fifth layer is better.
- Tilted silicon module layout with additional tilted modules can decrease the fake-track rate in the high $|\eta|$ region, if more than two hits are expected per layer.

- FCC-hh indeed has the potential to answer YES or NO to the existence of a pure wino or higgsino DM with a modified layout.
 - Minimum requirements
 - μ =500 or less pileup
 - 5 space points in track reconstruction
 - 5th pixel layer inner than ~15 cm
 - To discover earlier than 30 ab⁻¹
 - lower μ is better due to the rapid rise of the fake-track BG rate.
 - Tilted silicon layout decrease BG significantly. (quantitive study to be done.)

Backup

<u>Uncertainties and future improvements in</u> <u>the estimation</u>

- Main background (fake tracks) is about proportional to the fifth power of the pixel-hit rate (for 5-layer tracks). Reducing the uncertainty in the soft QCD processes would improve the estimate.
- We will consider further about other possible sources of BG (e.g. semifake tracks: scattered particle + a random hit).
- Fake-track rate depends on the track reconstruction algorithm. The rate could be decreased by improving it (e.g. machine learning to identify fake tracklets ?)
- Categorising the signal region by the number of layers and rapidity should improve the sensitivity.

Signal geometrical acceptance

[%]			Default layout	Alternative layout
	4-layer track	4.0	7.3	
Mino (2 To)/	1 < 1.9	5-layer track	0.84	4.0
wino (Silev)	vvino (3 TeV) η < 1.0	4-layer track	2.5	4.4
		5-layer track	0.57	2.5
$ \eta < 1.9$ Higgsino (1 TeV) $ \eta < 1.0$	4-layer track	0.0059	0.023	
	// < 1.9	5-layer track	0.00028	0.0059
		4-layer track	0.0043	0.016
	5-layer track	0.00022	0.0043	

30% uncertainty in BG yield is assumed

5-layer tracks, $|\eta| < 1.9$, $\mu = 500$, 30 ab⁻¹

[%]		Default layout	Alternative layout
Wino (3 TeV)	1st jet pT [TeV]	1	1
	ETmiss [TeV]	5	5
	Signal events 22.9		68.3
	BG events	74.5	64.7
	Expected significance	2.3	6.7
Higgsino (1 TeV)	1st jet pT [TeV]	2	8
	ETmiss [TeV]	1	9
	Signal events	2.4	4.2
	BG events	13291	1.8
	Expected significance	0	2.1

30% uncertainty in BG yield is assumed

5-layer tracks, $|\eta| < 1.9$, $\mu = 200$, 30 ab⁻¹

[%]		Default layout	Alternative layout
Wino (3 TeV)	1st jet pT [TeV]	1	1
	ETmiss [TeV]	4	2
	Signal events	38.1	422
	BG events	6.0	145
	Expected significance	9.8	26
Higgsino (1 TeV)	1st jet pT [TeV]	1	1
	Ermiss [TeV]	1	4
	Signal events	3.3	23.1
	BG events	1980	5.8
	Expected significance	0.1	6.7

30% uncertainty in BG yield is assumed

5-layer tracks, $|\eta| < 1.0$, $\mu = 500$, 30 ab⁻¹

[%]		Default layout	Alternative layout
Wino (3 TeV)	1st jet pT [TeV]	1	1
	E ^{Tmiss} [TeV]	4	4
	Signal events 28.5		92.6
	BG events	27.0	14.5
	Expected significance	4.6	15
Higgsino (1 TeV)	1st jet pT [TeV]	1	8
	ETmiss [TeV]	1	8
	Signal events	2.7	4.7
	BG events	8214	0.17
	Expected significance	0	4.5

30% uncertainty in BG yield is assumed

5-layer tracks, $|\eta| < 1.0$, $\mu = 200$, 30 ab⁻¹

[%]		Default layout	Alternative layout
Wino (3 TeV)	1st jet pT [TeV]	1	1
	ETmiss [TeV]	4	2
	Signal events	28.5	287
	BG events	1.9	42.6
	Expected significance	10	27
Higgsino (1 TeV)	1st jet pT [TeV]	1	1
	E ^{Tmiss} [TeV]	1	4
	Signal events	2.7	19.0
	BG events	673	1.6
	Expected significance	0	8.9

Software used in this study

Wino mass spectrum	SOFTSUSY
Higgsino mass spectrum	SUSYHIT
Signal cross-section	PROSPINO2
Signal Kinematic distribution	MG5_aMC@NLO
SM BG	MG5_aMC@NLO
Detector response	DELPHES
Minimum-bias events	PYTHIA8

Eт^{miss} and jet рт

