FCChh Hadronic Calorimeter and performance

Martin Aleksa, Jana Faltova, Clement Helsens, Ana Henriques,
Coralie Neubüser, Michele Selvaggi, Anna Zaborowska

FCCWEEK2018
12.04.18
1. Discussion of design baseline choices
2. Performance (pions, jets)
Challenges for Hadronic Calorimetry at FCC-hh

1. High radiation levels
2. Containment of multi-TeV hadron showers
3. Large number of pile-up

$\rightarrow \eta$ dependent requirements
\rightarrow meet performance goals

<table>
<thead>
<tr>
<th></th>
<th>1 MeV neq $[\text{cm}^{-2}]$</th>
<th>dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel</td>
<td>$\leq 3 \times 10^{14}$</td>
<td>$\leq 6 \text{ kGy}$</td>
</tr>
<tr>
<td>Endcap</td>
<td>$\leq 2 \times 10^{16}$</td>
<td>$\leq 1 \text{ MGY}$</td>
</tr>
<tr>
<td>Forward</td>
<td>$\leq 5 \times 10^{18}$</td>
<td>$\leq 5 \text{ GGY}$</td>
</tr>
</tbody>
</table>
FCC-hh detector

total length ~ 47 m, height ~ 18 m

<table>
<thead>
<tr>
<th>HCAL Barrel / Ext. Barrel</th>
<th>HCAL Endcap</th>
<th>HCAL Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\eta</td>
<td>< 1.5$</td>
</tr>
<tr>
<td>Sci-Pb-Steel (1:1.3:3.3)</td>
<td>LAr-Cu (1:5)</td>
<td>LAr-Cu (1:200)</td>
</tr>
<tr>
<td>$\Delta \eta < 0.025, \Delta \phi = 0.025$</td>
<td>$\Delta \eta = 0.025, \Delta \phi = 0.025$</td>
<td>$\Delta \eta = 0.05, \Delta \phi = 0.05$</td>
</tr>
<tr>
<td>10/8 layers</td>
<td>82 (21 eff.) layers</td>
<td>52 layers</td>
</tr>
<tr>
<td>$\sigma_E/E \sim 50%/\sqrt{E} \oplus 3%$</td>
<td>$\sigma_E/E \sim 50%/\sqrt{E} \oplus 3%$</td>
<td>$\sigma_E/E \sim 100%/\sqrt{E} \oplus 5%$</td>
</tr>
</tbody>
</table>

Forward Calo up to $\eta=6$
Radiation levels

Barrel
ATLAS like Sci tile Calorimeter

- readout at outer radius ($\sim 10^{11} \text{ neq cm}^{-2}$)
 \rightarrow replace photomultiplier tubes by SiPMs
 \rightarrow single channel readout, timing

- current ongoing R&D on scintillator material and SiPM technology fulfil requirements (6 kGy)

\rightarrow mechanical structure feasible, assembly study done at JINR (N. Topiline)
\rightarrow first test of Sci tiles in FCC size started at LIPP institute, Lisbon (R. Goncalo)
Optimisations of Barrel Tile HCal

- included Pb absorbers
 → Scintillator/Pb/Steel (1:1.3:3.3)
- decreasing non-compensation by suppression of EM response
 Pb: $X_0 = 0.6$ cm, $\lambda_n = 17.6$ cm
 (Fe: $X_0 = 1.8$ cm, $\lambda_n = 16.8$ cm)
- reduces total depth $[\lambda_n]$ from 8.9 (full Steel) to 8.5

\[
\begin{align*}
\text{Sci:Steel (1:4.7)} & & \text{stochastic term} & & 42.2\% \text{GeV}^{1/2} \\
\text{Sci:Pb:Steel (1:1.3:3.3)} & & \text{constant term} & & 3.3\% \\
& & e/h & & 1.23
\end{align*}
\]
Containment and calorimeter depth

- multi TeV hadron showers penetrate up to $12\lambda_n$
- avoid leakage to preserve small constant term

$$\frac{\sigma_E}{E} = \frac{\alpha}{E} + c$$ \hfill (1)

<table>
<thead>
<tr>
<th>depth [λ_n]</th>
<th>stoch. term [% GeV$^{-1/2}$]</th>
<th>const. term [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>3.1</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>2.7</td>
</tr>
<tr>
<td>12</td>
<td>43</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Containment and calorimeter depth

Barrel $|\eta| < 1.5$: 1.8 m thick HCal ($\eta = 0$) → 8.5 λ HCal only
→ 10.5 λ incl. ECal → 12 λ (incl. supports) punch throughs seen in muon chambers

Endcap & Forward $|\eta| = 1.4 - 6.0$: cover min. 12 λ
High pile-up environment

- High transverse and longitudinal granularity
 Barrel max. granularity:
 → 10 longitudinal layers (0.5 to 1.25) \(\lambda_n \)
 → \(\Delta \eta \leq 0.006, \Delta \phi = 0.025 \)
 → 1,305,600 channels

- timing
 → Sci + SiPMs already possible \(\sim 30 \text{ ps} \)
 (CMS timing layer)

500 GeV \(\pi^- \), \(\eta = 0.36 \)
Combined calorimeter performance
Single π^- reconstruction

Reconstruction methods:

1. cell level:
 \[E_{\text{rec}} = E_{\text{em}} + E_{\text{had}}^{\pi} \]

2. benchmark:
 \[E_{\text{rec}} = E_{\text{em}} \cdot a + E_{\text{had}}^{\pi} + b \cdot \sqrt{|E_{\text{em}, \text{lastL}} \cdot a \cdot E_{\text{had}, \text{firstL}}|} + c \cdot (E_{\text{em}} \cdot a)^2 \]

3. topo-cluster: clustered Calo cells
 - benchmark reconstruction recovers the lost energy up to 5%
 - expected decrease in response after topo-clustering \(\leftarrow \) thresholds
 - next step include benchmark on cluster level

Performance Results

<table>
<thead>
<tr>
<th></th>
<th>HCal only</th>
<th>ECal + HCal benchmark</th>
<th>ECal + HCal topo-cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>stochastic term</td>
<td>38.8%</td>
<td>45.9%</td>
<td>51.0%</td>
</tr>
<tr>
<td>constant term</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
Jet reconstruction

Simulations: 100 TeV pp collisions, p_t range of di-jets from 20 GeV to 10 TeV

Reco with FastJet:
anti-k_t jet algorithm based on $d_{i,j} = \min\left(\frac{1}{p_{ti}^2}, \frac{1}{p_{tj}^2}\right) \frac{\Delta R_{ij}^2}{R^2}$
with $\Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$, $\Delta R < 0.4$
matching of reco and gen jets within $\Delta R < 0.3$

1. cell level
2. topo-cluster
 - seed thr. ECAL: 7.5 MeV
 - seed thr. HCAL: 11.5 MeV
 - every neighbour is collected
3. topo-cluster w/ noise
 - seed thr. 4σ of cell noise level
 - neighbour thr: 2σ of cell noise level
 - in last step all neighbours are collected
Jet energy resolution

- in case of $B=0\,\text{T}$, constant term smaller than 3%
- validated the topo-clustering
Jet angular resolutions

- η resolution reaches the average HCal granularity of 0.005
- ϕ resolution better than max HCal granularity of 25 mrad
Jet energy resolution
in $\langle \mu \rangle = 100$ – PRELIMINARY

- topo-cluster algorithm successfully reduces the impact of electr. noise to minimum
- first look at impact of pile-up shows need for strategy for PU rejection (e.g. optimise topo-cluster threshold)
Jet energy resolution in $\langle \mu \rangle = 100$ – PRELIMINARY

- no pile-up rejection technique applied, except for topo-cluster threshold
- compared to ATLAS simulations, that include additional pile-up rejection
Jet energy resolution in $B=4T$ – PRELIMINARY

- Large effect of B field, loose large fraction of the jets' energy for $p_T < 500 \text{ GeV}$ (low energetic charged particles do not reach calorimeters)
- Need tracker \rightarrow PFA
Summary & Outlook

▶ full simulation and reconstruction chain in FCCSW established for single hadrons and jets
▶ the hadronic and EM calorimeter of the Barrel region shows promising energy resolutions:

<table>
<thead>
<tr>
<th></th>
<th>stochastic term</th>
<th>constant term</th>
</tr>
</thead>
<tbody>
<tr>
<td>single particle</td>
<td>51.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>jets</td>
<td>58.0%</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

→ numerous additions possible (cluster calibration incl. benchmark correction, particle flow, timing)

Next steps towards CDR:
▶ estimations of ultimate pileup scenario
▶ performances of Endcap/Forward
Material budget

FCC-hh simulation
Tile HCAL, outer support
Tile HCAL (EB+50cm in z)
Tile HCAL
LAr HCAL
LAr ECAL
tracker + beampipe

04.04.2018
Coralie Neubüser: FCChh HCal and combined performance
Pileup noise per cell no B field

ECal

HCal

ECal

HCal
Pileup noise per cell in 4T field

ECal

- Layer 1
- Layer 2
- Layer 3
- Layer 4
- Layer 5
- Layer 7
- Layer 8

HCal

- Layer 1
- Layer 2
- Layer 3
- Layer 4
- Layer 5
- Layer 7
- Layer 8
Energy distributions of clusters, cells in layer 2:

- \(\sum E_{\text{cell}} \)
- \(\sqrt{\sum E_{\text{cell}}^2} \)
- RMS of \(E_{\text{cluster}} \)

Cluster size: \(\Delta \eta \times 7, \Delta \phi \times 17 \), at \(|\eta| < 0.1 \)
$\eta = 0.36$

with depth of cell d_{particle}, along shower axis, within active Calorimeter

$\lambda_{\text{ECAL}} (\eta = 0) = 0.3, \lambda_{\text{HCAL}} (\eta = 0) = 2.2$

$\lambda_{\text{ECAL}} = 29.4 \text{ cm}, \lambda_{\text{HCAL}} = 20.1 \text{ cm}$
Shower images 100 GeV π^- at $\eta = 3$.

Coralie Neubüser: FCChh HCal and combined performance
Benchmark reconstruction

correction for lost energy between E and HCAI (in cryostat)

\[E_{benchmark} = E_{em} \cdot a + E_{had}^\pi + b \cdot \sqrt{|E_{em, lastL} \cdot a \cdot E_{had, firstL}|} + c \cdot (E_{em} \cdot a)^2 \] \hspace{1cm} (4)

- optimised with (10 & 100) GeV, (1 & 10) TeV à 400 events
- \(a = 0.978 \), \(b = 0.479 \), \(c = -5.4 \times 10^{-6} \) GeV\(^{-1} \)
Algorithm to cluster Calorimeter cells

Logic algorithm:

1. Finding seed cells above **1st threshold** of noise level in cell
2. seeds are sorted by energy
3. building clusters
4. find neighbours of the seed, include to cluster if above **2nd threshold**
5. the found neighbours become new seeds

repetition of 4 and 5, until no more neighbours found

6. add all neighbours for last seed (**3rd threshold**=0)
Topo-clusters – 500GeV π^-, w/B field, w/o noise

z axis

cell types:
1 = seed cell
2 = neighbour
Topo-clusters – 500GeV π^-, w/B field, w/o noise

HCal granularity not 0.01 in η, decreasing with increasing η z axis
c cluster ID