

Relation between beam energies and centre-of-mass energy

T. Tydecks, J. Wenninger

FCC week 2018, Amsterdam

April 12, 2018

Motivation

- ► energy calibration for Z operation mode (45.6 GeV) to accuracy in order 10⁻⁶ ⇒ this corresponds to an uncertainty of 100 keV
- we typically measure average beam energy using resonant spin depolarization to high accuracy (comp. A. Blondel Tue 13:30)
- ► relation between beam energy and centre of mass (cm) energy
 - effect of synchrotron radiation / sawtoothing on cm energy
 - effect of RF phase jitter
 - effect of spurious dispersion

Beam energy / centre of mass energy

► for physics processes, centre of mass energy E_{cm} is relevant quantity instead of local beam energy E_{1,2}

Relation between E_{cm} and momentum $P_i = (E_i, \vec{p}_i)$:

$$E_{cm} = \sqrt{(P_1 + P_2)^2} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 c^2}$$

- for head on collision: $\vec{p}_1 + \vec{p}_2 = 0$ and $E_{cm} = E_1 + E_2$
- for crossing angle (assuming $|\vec{p}_1| = |\vec{p}_2| = p_0$):

$$E_{cm} = \sqrt{(P_1 + P_2)^2} = \sqrt{(E_1 + E_2)^2 - 4p_0^2(1 - \cos\theta)c^2}$$

Effect of crossing angle on cm energy

$$E_{cm} = \sqrt{(P_1 + P_2)^2} = \sqrt{(E_1 + E_2)^2 - 4p_0^2(1 - \cos\theta)c^2}$$

in 5 min, crossing angle can be recorded to statistical precision of 0.3 µrad from angular distribution of dimuon events:

 $e^+e^-
ightarrow \mu^+\mu^-(\gamma)$

Patrick Janot, Determination from $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$

events, CDR

 \Rightarrow resulting uncertainty: $\sigma_{E_{cm}} \approx$ 1 keV

イロト 不得 トイヨト イヨト

T. Tydecks et al., Relation between beam energies and cm energy

FCC week / Amsterdam

Effect of synchrotron radiation (I)

- energy loss due to synchrotron radiation is restored in rf-cavities
- rf is centered in two straight sections leading to energy sawtooth

Effect of synchrotron radiation (II)

- due to assymmetry at IP to avoid hard synchrotron radiation in detectors
- ⇒ IP is no symmetry point regarding beam energy
- $\Rightarrow E_{\rm IP} \neq E_{\rm RF}$
- $\Delta E_{cm} = 216 \, \text{keV}$
- precise model of beam energy along circumference needed to determine cm energy from "average" beam energy measured by resonant spin depolarization

Effect of synchrotron radiation (III)

- precise model of beam energy requires precise model of magnetic induction along circumference
- energy sawtooth can be obtained from orbit if machine is not tapered and magnetic induction varies little between dipoles
- energy sawtooth can help improve machine model

depolarization is the same!beam energy will vary

 asymmetry between beam energies at IP's will be measured by μ pairs to great precision

The problem with two rf systems

- up to now: assumed perfect rf
- what happens if two rf systems are out of phase?
 - for all displayed conditions: average energy measured by resonant spin depolarization is the same!
 - beam energy will vary asymmetrically regarding azimuthal position & particle species

The case for one rf system

- ▶ in the case of one rf:
 - no detuning with respect to other rf-straight
 - energy determined by rf-frequency only
- however, grid would need to supply 100 MW in one point

A 3 3

 $\sigma_{\phi} = 10^{-5}$

- two rf-straights: each containing 20 rf cavities.
- random phase errors for all cavities

 $\sigma_{\phi} = 10^{-4}$

- ► two rf-straights: each containing 20 rf cavities.
- random phase errors for all cavities

 $\sigma_{\phi} = 10^{-3}$

- two rf-straights: each containing 20 rf cavities.
- random phase errors for all cavities

T. Tydecks et al.,

- usually σ_{ϕ} in the order of 1×10^{-4}
- \Rightarrow effect in the order of 5 keV on beam energy at IP

T. Tydecks et al., Relation between beam energies and cm energy

, FCC week / Amsterdam

э

• • = • • = •

Spurious dispersion (I)

- in the case of spurious dispersion at the IP
- \Rightarrow particles are sorted according to their energy
- even well corrected machine will have some dispersion left at IP
- depending on sign of dispersion per beam, different effects arise:

Spurious dispersion (II)

- depending on the sign of the dispersion, this leads to
 - reduction / increase in cm energy spread
 - shift of cm energy if beams do not collide head on
- a difference in dispersion ΔD leads to shift of cm energy⁽¹⁾:

 $\Delta E_{cm} = -u_0 \frac{\sigma_E^2 \Delta D}{E_0 \sigma_u^2}$

assuming: $\sigma_x = 6.4 \mu\text{m}, \sigma_y = 28 \text{nm}, \sigma_{D_x} = 0.1 \text{mm}, \sigma_{D_y} = 1.0 \text{mm}$				
$\frac{u_0}{\sigma_u}$	0.1	0.5	1.0	
$\Delta E_{cm}(D_x)$ / MeV	0.12	0.59	1.18	
$\Delta E_{cm}(D_y)$ / MeV	0.28	1.42	2.84	

(1) J. Jowett et al, Influence of Dispersion and Collision Offsets on the Center-of-mass Energy at LEP, CERN SL/ Note:95-46 (@P) 🛛 😫 🗠 🏨 🖉

FCC week / Amsterdam

Summary & Outlook

- energy calibration for FCC-ee with a final uncertainty in the order of 100 keV will require an excellent machine model
- knowledge of magnetic induction along the circumference to high precision is mandatory
- sawtooth orbit would be an additional option to calibrate the model
- online monitoring will be necessary for
 - dispersion
 - beam overlap
 - crossing angle
- not covered here but also important: longitudinal impedance

Thanks for your attention...

FCC week / Amsterdam

э

