FCC-he Working Group Highlights

Uta Klein

on behalf of

the LHeC/FCC-he WG

Contributions he: FCC-hadrons + ERL-e⁻

Introduction: (Mo) B. Mellado, J. Rudermann

Joint Physics Session: (Tue) QCD - M. Klein, Higgs - M. Klute, EW -

R. Tenchini, **Top** - C.Schwanenberger, **Global Fits** – J. deBlas

WG Part 1: (Thu) Accelerator and PERLE

Overview on FCC-eh design – O. Brüning

Civil Engineering – J. Osborne

Interaction Region – R. Martin

PERLE Facility – W. Kaabi

WG Part 2: (Thu) Physics and Detector

FCC-he as a Higgs Facility – U. Klein

BSM Physics in eh – M. d'Onofrio

Top Quark Physics – O. Cakir

A Detector for eh – P. Kostka

Concurrent he and FCC-hh

operation!

Same concept holds for HL-LHC
and HE-LHC.

ERL Design: CDR arXiv:1206.2913

Contributions he: FCC-hadrons + ERL-e⁻

Introduction: (Mo) B. Mellado, J. Rudermann

Joint Physics Session: (Tue) QCD - M. Klein, Higgs - M. Klute, EW

R. Tenchini, Top - C.Schwanenberger, Global Fits – J. depu

Civil Engineering – J. Osbon The Future Circular Collider
Interaction Region

FCC-eh: a good mix of both

PERLE

• In short:

FCC-ee: Experimental PRECISION

Overlay from J. deBlas — M. d'Onofrio

A Detector for eh – P. Kostka

Concurrent he and FCC-hh operation!

FCC-hh: ENERGY

Same concept holds for HL-LHC

and HE-LHC.

ERL Design: CDR arXiv:1206.2913

eh: Resolving a non-trivial Structure...

year4

*Jaffe&Witten 2000: 1 out of 7 millenium prize questions

That's it?? That may not be it...

Developments

Discoveries

Talk by M Klein

AdS/CFT
Instantons
Odderons
TOTEM ? CERN EP 2017-335

Non pQCD, Spin Quark Gluon Plasma

QCD of Higgs boson

N^kLO PDFs, Monte Carlos.. Resummation Saturation and BFKL

Photon, Pomeron, n PDFs
Non-conventional partons
(unintegrated, generalised)
Vector Mesons
The 3 D view on hadrons...

CP violation in QCD?
Massless quarks?? Would solve it..
Electric dipole moment of the neutron?
Axions, candidates for Dark Matter

Breaking of Factorisation [ep-pp]

Free Quarks

Unconfined Color

New kind of coloured matter

Quark substructure

New symmetry embedding QCD

C. Quigg, arXiv1308.6637

QCD has an exciting future with the FCC

Direct Measurement of |Vtb|

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

including top-quark mass uncertainty σ_{theo}: NLO PDF4LHC11

NPPS205 (2010) 10, CPC191 (2015) 74 including beam energy uncertainty

Top Quark Physics at FCC

Christian Schwanenberger -

FCC Week 2018

14

- \rightarrow amazing precision expected for $|V_{th}|$ in ep
- → top cross section at FCC-he 15.3 pb (LHeC: 1.7 pb in CC DIS)

Talk by O. Cakir: Updates for FCC-he including $|V_{ts}|$ and $|V_{td}| \rightarrow$ work ongoing by H. Sun for CDR

Talk by J deBlas

Electroweak precision measurements at FCC-eh

Precision measurements of couplings to light quark families

See Talk by D Britzger, FCC Physics Week 2018

Observable	${\bf Uncertainty}$	(Relative uncertainty)
g_V^u	0.0022	(1.1%) (0.6%)
g_A^{iu}	0.0031	(0.6%)
$egin{array}{c} g^d_V \ g^d_A \end{array}$	0.0049	(1.4%)
g_A^a	0.0049	(0.97%)

Global fit to electroweak precision measurements at FCC-ee + FCC-eh

Higgs in ep - clean S/B, no pile-up

→ Main systematic checks: variations of background contribution and tagging efficiencies

Signal Strengths @ LHeC - HE-LHeC - FCCeh

Charged Currents: ep \rightarrow vHX Neutral Currents: ep \rightarrow eHX

→NC and CC DIS together over-constrain Higgs couplings in a combined fit.

 $E_e = 60 \text{ GeV } \text{LHeC } E_p = 7 \text{ TeV L} = 1 \text{ab}^{-1} \text{ HE-LHC } E_p = 14 \text{ TeV L} = 2 \text{ab}^{-1} \text{ FCC: } E_p = 50 \text{ TeV L} = 2 \text{ab}^{-1}$

Higgs precision observables at FCC ee and eh

Talk by J deBlas

Fit to modified Higgs couplings (assuming no extra invisible decays)

	FCC-ee			FCC-eh
Coupling	Relative precision	NEW <	Coupling	Relative precision
κ_b	0.58%	ZINN	κ_b	0.74%
κ_t	_		κ_t	_
$\kappa_{ au}$	0.78%	,	$\kappa_{ au}$	1.10%
κ_c	$\boldsymbol{1.05\%}$		κ_c	1.35%
$\kappa_{m{\mu}}$	9.6%		$\kappa_{m{\mu}}$	_
κ_Z	0.16%		κ_Z	0.43%)
κ_W	0.41%		κ_W	0.26%)
κ_g	1.23%		$\kappa_{m{g}}$	1.17%
$\kappa_{m{\gamma}}$	$\boldsymbol{2.18\%}$		$\kappa_{m{\gamma}}$	$\boldsymbol{2.35\%}$
$\kappa_{Z\gamma}$	_		$\kappa_{Z\gamma}$	

Summary by J deBlas

$$\kappa_i \equiv g_{hi}/g_{hi}^{SM}$$

ttH: 1.85%

ep: see Talk by U Klein

Higgs → invisible: 1.2%

- All three FCC options complement each other very well:
 - FCC-ee allows not only very precise measurements of the Higgs and EWPO but also provides the normalization for more precise measurements at the FCC-eh and FCC-hh
 - FCC-eh complements FCC-ee providing information about light quark EW couplings. Similar precision in the Higgs sector
 - FCC-hh fills gaps in precision Higgs measurements for rare decays, top and the Higgs selfcoupling

Higgs complementarities: Global fit to Higgs couplings at FCC

All single Higgs couplings can be determined below the 1%

FCC-ee/FCC-eh

Precise determinations for the leading couplings

HZZ Crucial for normalization of FCC-hh results

FCC-hh

Completes the picture with precise determinations of Top and coupling associated to rare decays

NOT MODEL-INDEPENDENT:

Results assume that, if there is New physics, it can only be in the Higgs couplings

HL	$\mathrm{LHC} + \mathrm{FCC}$
Coupling	Relative precision
κ_b	0.38%
κ_t	0.51%
$\kappa_{ au}$	$\boldsymbol{0.58\%}$
κ_c	0.79%
$\kappa_{m{\mu}}$	$\boldsymbol{0.42\%}$
κ_Z	0.14%
κ_{W}	0.17%
$\kappa_{m{g}}$	0.74%
κ_{γ}	0.40%
$\kappa_{Z\gamma}$	$\boldsymbol{0.52\%}$

$$\kappa_i \equiv g_{hi}/g_{hi}^{SM}$$

(long-lived) Higgsino

Curtin, Deshpande, Fischer, Zurita,

arXiv: 1712.07135 (2017)

See Talks by J Rudermann and M. d'Onofrio

Displaced vertices!

→ ep potential for

look like hadronic

general BSM

searches 'that

Production at e-p via vector boson fusion

Signal: single soft displaced pion Beam remnant jet ⇒ primary vertex with O(10) µm precision

softly decaying, short-lived (~ µm) long-lived particles

~ 450 GeV higgsino (thermal relic DM) can be discovered with 1/ab

Monica D'Onofrio, FCC Week Amsterdam

12 April 2018

noise' in pp. [Cite D Curtin] → also: heavy neutrino-antineutrino oscillations, see 1709.03797; lepton number violation? Test the Majorana nature.

Many new ideas and papers on BSM in ep.

FCC-eh Tracker Layout

bwd - planar design

fwd - tilted design

Very compact layout Forward/backward boosted jet-/particle-flow

NO pile-up from FCC-eh BUT

- effects of thick BP to be investigated in detail
- resolution of displaced vertices, secondary vertices, boosted daughters
- vertex tagging 5-10µm resolution required; accompanied by excellent calorimeter measurement resolutions (warm option) have been presented (prel.)

Going from planar design to Inclined inner tracker modules minimizing material budget

Optimised by pattern recognition and vertexing

- 3.5mm beam pipe thickness
- 3.5T solenoidal field

Zbyněk Drásal:

https://github.com/drasal/tkLayout/tree/masterLite

FCC-he Detector Basic Layout

Talk by P Kostka

Based on the LHeC design; Solenoid&Dipoles between Electromagnetic Calorimeter and Hadronic Calorimeter. Length of Solenoid ~11m. detector setup in DD4hep.

https://dd4hep.web.cern.ch/dc

Discussion of ep solenoids by H ten Kate, see CERN March 2018: No R&D needed

FCC-he Interaction Region

IR configuration with head-on collisions → in-experiment dipole system ±0.073 T

R. Martin: NEW optics designed for FCC-he for $\beta^* = 0.3$ m

Goal: $\beta^* \sim 0.15$ m

Critical: Magnet apertures, gradients - progressing Minimize Synchrotron Radiation, maximize Lumi

Talk by R Martin

Interaction region layout for $\beta^* = 0.3 \,\mathrm{m}$

Note: β_e^* naively scaled to have $\beta_e^* \cdot \epsilon_e = \beta_p^* \cdot \epsilon_p$

FCC-he Site and Integration to FCC-hh

Talks by O Brüning and J Osborne

ep with 1000 times
HERA luminosity
and
a new world
for eA!

ERL Design: CDR arXiv:1206.2913

60 GeV ERL tangential to FCC-hh. IP: L for geological reasons. L= 1.5 10³⁴ Higher s, Q², 1/x

Scope of FCC-eh Structures

LHeC Configuration: Size variations

- SRF as the main cost driver for the 60 GeV Configuration:
 - → Reducing the electron beam energy can almost half the ERL cost
 - → Design and build the arcs for higher beam energy to allow for later upgrades
 - → Provide free space in the linac sections for later upgrades
- 30GeV to 50GeV Variation:
 - → Reducing the initial SRF cost by 50%
 - → Provide upgrade potential for up to 50GeV
 - \rightarrow Overall size from $1/3^{rd}$ to $1/5^{th}$ of the LHC circumference
- The LHeC could be re-used for the first installation phase for the FCC-eh

PERLE: Powerful ERL for Experiments @ Orsay

Talk by W Kaabi

PERLE configuration:

Target Parameter	Unit	Value	
Injection energy	MeV	7	
Electron beam energy	MeV	500	
Normalised Emittance $\gamma \epsilon_{x,y}$	mm mrad	6	
Average beam current	mA	20	
Bunch charge	рC	500	
Bunch length	mm	3	
Bunch spacing	ns	25	
RF frequency	MHz	801.58	
Duty factor		CW	

PERLE Collaboration today:

PERLE in the global landscape:

PERLE: Powerful ERL for Experiments @ Orsay

Talks by O Brüning and W Kaabi

20 mA; 500 MeV, up to 10 MW; Footprint: 24 x 5.5 x 0.8 m³

PERLE Collaboration: CERN, JLAB, Daresbury, Liverpool, Novosibirsk, LAL and IPN Orsay CDR: arXiv:1705.08783; 802 MHz cavity tested, see Talk by F Marhauser; TDR for 2019

Machine Study Goals:

- -High current, multi-turn (3) ERL concept with 802MHz SRF
- -Beam Breakup intensity limit and filling patterns,
- -ERL efficiency,
- -beam size evolution etc.
- -SRF LLRF feedback and control
- -Failure scenarios
- -Beam Halo formation and dump line acceptance
- -Beam Instrumentation
- -Build up operational experience
- -Source and injector

Potential for low energy electron and photon physics being explored.

Workshops

Recent: September 2017
https://indico.cern.ch/event/639067/

Next: 27-29 June 2018 Orsay https://indico.cern.ch/event/698368/
Preparation for strategy:
Physics, Accelerator, Detector, PERLE

Many eh related workshops
FCC Physics Week CERN Jan 2018)
FCC Week:April 2018 (Amsterdam)
Next Week: DIS 2018 April (Kobe)
HL-HE LHC Physics June 2018 (CERN)
which includes ep/eA

Work on CDRs progressing well!

https://lhec.web.cern.ch

The Journey just started...

Slide from J Rudermann

things "we don't know we don't know"

Additional material

He electrons for pp : ERL + LHC

- Two Electron LINACs + 3 return arcs: using energy recovery in same structure: 'green' technology with power consumption < 100 MW: nominal $\underline{E}_e = 60 \text{ GeV}$
- Beam dump: no radioactive waste!
- high electron polarisation of 80-90%
- Installation decoupled from LHC operation

Concurrent ep and HL-LHC
operation!
Same idea holds for HE-LHC and
FCC-hh

- ep Lumi 10³⁴ cm s⁻² s⁻¹ **
- 100 fb⁻¹ per year, e.g. ~2030-2040 (HL-LHC)
- L= 1000 fb⁻¹ total collected in 10 years
- eA luminosity estimates ~ 10³³ cm s⁻² s⁻¹ eA

** based on existing HL-LHC proposal

LHeC CDR: arXiv:1206.2913 and updates at LheC/FCC-eh WS@CERN, 9/17

Detector Design

for HL+HE+FCC ep
Peter Kostka et al.

→ installation in 2 years,
e.g. during LS4

LHeC Precision Partons for Higgs@pp

- → <u>Using LHeC input</u>: experimental uncertainty of predicted <u>LHC Higgs</u>
- cross section due to PDFs and α_s is strongly reduced to <~0.5%
- → theoretically clean path to determine N³LO PDFs using ep DIS
- → ALL those 'benefits' for pp within the first few years, using ~100 fb⁻¹ ep data

 NNLO pp-Higgs Cross Sections at 14 TeV

 \rightarrow precision from LHeC can add a very significant constraint on the Higgs mass and challenge Lattice QCD calculations for α_s :

Model-dependent Coupling Fit

 \rightarrow Assuming SM branching fractions weighted by the measured κ values, and Γ_{md} (c.f. CLIC model-dependent method)

 $E_e = 60 \text{ GeV } L=2ab^{-1}$ HE-LHC $E_p = 14 \text{ TeV}$ FCC: $E_p = 50 \text{ TeV}$

See also talk by Jorge de Blas at this workshop for further fits and ep+ee combinations.

Top Yukawa Coupling @ LHeC

B.Coleppa, M.Kumar, S.Kumar, B.Mellado, Phys. Lett. B770 (2017) 335

Introduce phase dependent top Yukawa coupling

$$\mathcal{L} = -i\frac{m_t}{v}\bar{t}\left[\cos\zeta_t + i\gamma_5\sin\zeta_t\right]th$$

Enhancement of the DIS cross-section as a function of phase

Observe/Exclude non-zero phase to better than $4\sigma \rightarrow$ With Zero Phase: Measure **ttH** coupling with **17% accuracy at LHeC** \rightarrow **extrapolation to FCCeh: ttH to 1.85%**