

BSM-Part 2: Beyond the SM

FCC Week 2018 - Amsterdam - 11 April 2018

Riccardo Torre

CERN, INFN Genova

BSM @ FCC

BSM: Behind vs Beyond the SM

Behind the SM

New physics needed by the SM to explain its puzzles

- Hierarchy problem
- Origin of flavor
- Strong CP

Beyond the SM

New phenomena not explained by the SM that need physics beyond it

- Flavor anomalies
- Neutrino masses
- Dark Matter
- Axions
- EW phase transition/Baryogenesys
- ➤ Given the current absence of hints of new physics in neither of the BSM directions, future colliders are a crucial step to look for any possible answer to all the open questions
- No discovery/no answer is guaranteed, but continuing exploration is absolutely mandatory

BSM: Behind vs Beyond the SM

Behind the SM

New physics needed by the SM to explain its puzzles

- Hierarchy problem
- Origin of flavor
- Strong CP

Beyond the SM

New phenomena not explained by the SM that need physics beyond it

- Flavor anomalies
- Neutrino masses
- Dark Matter
- Axions
- EW phase transition/Baryogenesys
- ➤ Given the current absence of hints of new physics in neither of the BSM directions, future colliders are a crucial step to look for any possible answer to all the open questions
- No discovery/no answer is guaranteed, but continuing exploration is absolutely mandatory

Flavor anomalies

See talk by Greljo @ 2nd FCC Physics Workshop

 $\operatorname{Re} C_{0}^{\mu}$

Flavor anomalies

- ➤ Several ongoing studies: [Di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner; Allanach, Gripaios, You; Robinson, Shakya, Zupan; Camalich; etc.]
- > Final states with τ, and b pose challenges
- ➤ Indirect FCC-ee potential also under investigation
- Some prospects for high-pt searches already available

Sterile neutrinos @ FCC

- > A simple way to generate neutrino masses is the seesaw mechanism
- > New heavy "sterile" neutrinos mix with the active neutrinos $\theta_{\alpha}=y_{\nu_{\alpha}}\frac{v}{\sqrt{2}M}$

Antusch, Cazzato, Fischer, 1612.02728 [hep-ph]

See talk by Fischer @ 2nd FCC Physics Workshop

Sterile neutrinos @ FCC

- > A simple way to generate neutrino masses is the seesaw mechanism
- > New heavy "sterile" neutrinos mix with the active neutrinos $\,\theta_{\alpha}=y_{\nu_{\alpha}}\frac{\sigma}{\sqrt{2}M}\,$

- ➤ For masses much above TeV best sensitivity from EWPT @ FCC-ee
- For intermediate masses good sensitivity from LFV (LNC) channels
 @ FCC-hh/eh
- ➤ For light masses best sensitivity from displaced vertices @ FCC-ee

Antusch, Cazzato, Fischer, 1612.02728 [hep-ph]

FCC-hh allows to probe heavy WIMPs out of the reach of present and future Direct Detection experiments

See talk by Bramante @ 2nd FCC Physics Workshop

- > FCC-hh allows to probe heavy WIMP out of the reach of present and future Direct Detection experiments
- > Reach improves by a factor 5/6 on most scenarios

> Direct detection insensitive below the neutrino floor

See talk by Bramante @ 2nd FCC Physics Workshop

> FCC-hh can access a large part of that parameter space of simplified models

Riccardo Torre

- ➤ In some concrete models, e.g. Z' mediators, FCC-hh can cover a large fraction of the full parameter space
- ➤ For reasonable couplings FCC-hh reach extends to more than 10 TeV (DM and mediator mass)

See talk by Bramante @ 2nd FCC Physics Workshop

Higgs portal

- ➤ Higgs portal models are relevant for different scenarios ranging from Dark Matter to Electroweak phase transition and Baryogenesis
- ➤ Simplest example: new EW singlet with Z₂ symmetry

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} M^2 \phi^2 - c_{\phi} |H|^2 \phi^2$$

Craig, Lou, McCullough, Thalapillil 1412.0258 [hep-ph]

EW phase transition

- Describes EWSB in early universe
- ➤ Possible cosmological relics
- Possible mechanism to generate Baryon Asymmetry (Baryogenesis)

$$V_{\text{eff}}(h,T) = V_0(h) + V_0^{\text{CW}}(h) + V_T(h,T)$$

- ➤ In the SM the phase transition is smooth (2nd order)
- > Need new physics that modifies the scalar potential to get a 1st order transition

EW phase transition

- > The SM plus a real scalar singlet is the simplest scenario
- Viable parameter space can be tested at FCC-ee (hZZ) and FCC-hh (hhh)

Axion Like Particles

- > Axion-like particles appear in many extensions of the SM
- > They could have very different masses/couplings
- For instance ALPs can be constrained through di-photon searches

14

Dark photons

➤ Good interplay between FCC-ee and FCC-hh

Summary...

... or, more optimistically

THANK YOU