

9-13 April 2018 Beurs van Berlage

Higgs Physics Program

- → Cornerstone of the LHC, HL-LHC, HE-LHC, and FCC (ee, ep, pp) physics program
 - Post-discovery: The Higgs Boson as Tool for Discovery
- → Many open questions and opportunities, ways to study Higgs bosons
 - Interactions with SM particles
 - Interactions with new particles (including Higgs as portal to DM)
 - Role of the Higgs boson in vector boson scattering
 - Extended Higgs sectors
 - Interactions with itself

Standing on the shoulder of giants

- → LHC experiments not only discovered the Higgs boson but will leave a legacy of precision measurements and constraints on new physics
- → FCC offers unique measurements and an enormous dataset
- → Selected highlights
 - Study of Higgs boson couplings with O(%) accuracy

$L (fb^{-1})$	κ_{γ}	κ_W	κ_Z	κ_g	κ_b	κ_t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

 Probing di-Higgs production with 3σ sensitivity

Higgs Boson Datasets: FCC-ee

FCC-ee
5ab-1 @ 240 GeV
~1.5ab-1@ 350-365 GeV

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]		
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4		
Z later	200	52 ab ⁻¹ /year				
W	25	7 ab ⁻¹ /year	10 ab ⁻¹	1		
H	7.0	1.8 ab ⁻¹ /year	5 ab ⁻¹	3		
machine modification for RF installation & rearrangement: 1 year						
top 1st year (350 GeV)	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1		
top later (365 GeV)	1.4	0.36 ab ⁻¹ /year	1.5 ab ⁻¹	4		

	FCC-ee 240 GeV	FCC-ee 350 GeV
Total Integrated Luminosity (ab-1)	5	1.5
# Higgs bosons from e+e-→HZ	1,000,000	200,000
# Higgs bosons form fusion process	25,000	40,000

Higgs Boson Datasets: FCC-eh

FCC-eh

2ab⁻¹ @ 60GeV x 50 TeV, 3.5 TeV

Luminosity for LHeC, HE-LHeC and FCC

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
E_p [TeV]	7	7	12.5	50
E_e [GeV]	60	60	60	60
\sqrt{s} [TeV]	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch [10 ¹¹]	1.7	2.2	2.5	1
$\gamma \epsilon_p \ [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch [10 ⁹]	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor H_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} \text{cm}^{-2} \text{s}^{-1}]$	1	8	12	15

Oliver Brüning¹, John Jowett¹, Max Klein^{1,2},
Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹

¹ CERN, ² University of Liverpool

April 6th, 2017

	FCC-ep 3.5 TeV
Total Integrated Luminosity (ab-1)	2
# Higgs bosons from NC [LO]	254,000
# Higgs bosons form CC [LO]	1,120,000
# Higgs boson from CC with 80% polarization [LO]	2,016,000

LHC, HL-LHC, HE-LHC, FCC-pp Higgs Production

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
ggH (N³LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

Higgs Boson Datasets: FCC-hh

FCC-hh 30ab⁻¹ @ 100 TeV

→ Extrapolation for Higgs Physics

- 10 times larger dataset, better detectors, more difficult environment
- 11-55 times larger cross section for single Higgs production
- 40 times larger cross section for double Higgs production
- **→** Effective statistical gain in Higgs measurements w.r.t HL-LHC
 - Factor > 10 for single Higgs production
 - Factor 20 for double Higgs production

parameter	FCC	-hh		
collision energy cms [TeV]	100	100		
dipole field [T]	16			
circumference [km]	97.7	97.75		
beam current [A]	0.5			
bunch intensity [10 ¹¹]	1	1		
bunch spacing [ns]	25	25		
synchr. rad. power / ring [kW]	240	2400		
SR power / length [W/m/ap.]	28.	4		
long. emit. damping time [h]	0.54			
beta* [m]	1.1	0.3		
normalized emittance [μm]	2.2			
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30		
events/bunch crossing	170	1000		
stored energy/beam [GJ]	8.4	1		

Higgs Boson Datasets: HE-LHC

HE-LHC 12ab⁻¹ @ 27 TeV

→ Extrapolation for Higgs Physics

- 4 times larger dataset, better detectors, more difficult environment
- 2.5 times larger cross section for single Higgs production
- 5 times larger cross section for double Higgs production
- → Effective statistical gain in Higgs measurements w.r.t HL-LHC
 - Factor 3 for single Higgs production
 - Factor 5 for double Higgs production

→ Studies can interpolated between HL-LHC and FCC-hh

parameter	HE-LHC
collision energy cms [TeV]	27
dipole field [T]	16
circumference [km]	27
straight section length [m]	528
# IP	2 & 2
beam current [A]	1.12
bunch intensity [10 ¹¹]	2.2 (0.44)
bunch spacing [ns]	25 (5)
rms bunch length [cm]	7.55
peak luminosity [1034 cm-2s-1]	25
events/bunch crossing	~800 (160)
stored energy/beam [GJ]	1.3
beta* [m]	0.25
norm. emittance [μm]	2.5 (0.5)

Extracting Higgs Boson Couplings: FCC-ep, hh

$$(\sigma \cdot BR)(gg \to H \to \gamma \gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

- Total Higgs width (Γ_H) can not be measured at the FCC-eh or FCC-hh with precision
- \rightarrow Higgs couplings can only be measured with precise knowledge of Γ_H (or one Higgs coupling) or using theoretical assumptions
- → Ratio measurements eliminate this problem, also allow for cancelation of systematic uncertainties

Standard Model of Elementary Particles

Higgs coupling to Z bosons: FCC-ee

- → Recoil method provides unique opportunity for decay-mode independent measurement of HZ coupling
 - Higgs events are tagged Higgs decay mode independent
 - expected precision 0.7% on ZH cross section
 - using only leptonic Z decays and only a measurement at 240 GeV so far

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$$

Total Higgs Boson Width: FCC-ee

- → Total Higgs boson width can be extracted from a combination of measurements in a model independent way
 - 1) tagging Higgs final states

$$\sigma(\text{ee} \to \text{ZH}) \cdot \text{BR}(\text{H} \to \text{ZZ}) \propto \frac{g_{\text{HZ}}^4}{\Gamma}$$

2) measurements of vector boson fusion production at 350 GeV

$$\frac{\sigma(\text{ee}{\rightarrow}\text{ZH}) \cdot \text{BR}(\text{H}{\rightarrow}\text{WW}) \cdot \sigma(\text{ee}{\rightarrow}\text{ZH}) \cdot \text{BR}(\text{H}{\rightarrow}\text{bb})}{\sigma(\text{ee}{\rightarrow}\nu\nu\text{H}) \cdot \text{BR}(\text{H}{\rightarrow}\text{bb})}$$

$$\propto \frac{g_{\rm HZ}^2 \cdot g_{\rm HW}^2}{\Gamma} \cdot \frac{g_{\rm HZ}^2 \cdot g_{\rm Hb}^2}{\Gamma} \cdot \frac{\Lambda}{g_{\rm HW}^2 \cdot g_{\rm Hb}^2} = \frac{g_{\rm HZ}^4}{\Gamma}$$

3) combination of all measurements

Higgs Boson Couplings: FCC-ee

→ Precision Higgs coupling measurements

- absolute coupling measurements enabled by HZ cross section and total width measurement
- data at 350 GeV constrain total width
 - only used H→bb in fusion production so far
- tagging individual Higgs final states to extract various Higgs couplings
- couplings extracted from model-independent fit
- statistical uncertainties are shown for 5ab⁻¹@240 GeV and 1.5ab⁻¹@350GeV (from arXiv:1308.6176)
 - all measurements are under review / are being redone
 - improvements 10-35% on cross section measurements
 - see Colin Bernet's talk in Tuesday session
- Discussion of coupling fits in Jorge de Blas' talk later in this session

in %	FCC-ee 240 GeV	+FCC-ee 350 GeV
9 нz	0.21	0.21
9 нw	1.25	0.43
Э нь	1.25	0.64
9 нс	1.49	1.04
G Hg	1.59	1.18
$g_{H_{ au}}$	1.34	0.81
Э Ημ	8.85	8.79
Янγ	2.37	2.12
Гн	2.61	1.55

Higgs Cross Section Measurements: FCC-eh

- → Summary of Higgs boson Xsec. measurements for charged and neutral current Higgs production
- → Good S/B in most channels, e.g. S/B ~ 3 for bb mode
- → Statistical uncertainties only
- → Coupling measurements enabled by FCC-ee total width measurement

Charged Current

Neutral Current

 $E_e = 60 \text{ GeV LHeC } E_p = 7 \text{ TeV L} = 1 \text{ ab}^{-1} \text{ HE-LHC } E_p = 14 \text{ TeV L} = 2 \text{ ab}^{-1} \text{ FCC: } E_p = 50 \text{ TeV L} = 2 \text{ ab}^{-1}$

More details in Uta Klein's talk Thursday

Top Yukawa: FCC-hh

- \rightarrow Extract Y_t from σ (ttH) / σ (ttZ)
- **→** Final states
 - Boosted Higgs
 - Boosted hadronic top
 - Leptonic decays
- → Precision measurement of top-Z coupling and Higgs total width from FCC-ee
- → Theory uncertainties discussed in <u>arXiv</u>: 1507.08169

 δY_t (stat + syst _{Th}) ~ 1%

Fit and extract $N_H/N_{Zto} \approx 1\%$ accuracy

Ratio Measurements: FCC-hh

- → Ratio measurements allow for low systematic uncertainties
- → The large dataset allows exploitation of low background (high S/B) regions
- **→** Examples shown here:
 - systematic uncertainties on objects included
 - assumption that e and γ systematics cancel
 - signal extraction systematics not included
- → Illustrating O(1%) precision measurements including systematic uncertainties
- → Higgs coupling measurements enabled in combination with FCC-ee

Higgs CP Studies at FCC-ee

- → H→ττ decay is promising channel to study
 CP violation
 - Tree level couplings to quarks and leptons
 - CP-even and CP-odd couplings induced at the same order
- → CP violation can be probed through τ polarization
 - τ decays clean enough that the spin information is not washed out by hadronization effects
 - pion emission preferred in the direction of the τ spin in rest frame
 τ[±]→ρ[±]ν_τ→π[±]π⁰ν_τ
 - $igo igo ext{exploring} \qquad \mathcal{L}_{hff} \propto h ar{f} (\cos \Delta + \mathrm{i} \gamma_5 \sin \Delta) f$
 - model using effective lagrangian

Andres Rios (MIT), Aram Apyan (FNAL)

following arXiv:1308.1094

- 920 signal event in 5ab-1
- expected 68% CL
 - 0.17 radian (0.05 in GEN level study)
 - 9.7 degree (2.9 in GEN level study)

Electron Yukawa Couplings at FCC-ee

⇒s-channel Higgs production

- unique opportunity for measurement close to SM sensitivity
- highly challenging; $\sigma(ee \rightarrow H) = 1.6 \text{fb}$; $\sigma(e+e-\rightarrow H) = 50 \text{ab}$ (nominal $\delta E/E$)
- various Higgs decay channels studied
- studied monochromatization scenarios
 - baseline: 6 MeV energy spread, L = 2ab⁻¹
 - optimized: 10 MeV energy spread, L = 7ab⁻¹
 - limit ~3.5 times SM in both cases

arXiv:1701.02663

Monochromatization study

Higgs-Portal Dark Matter Searches

→ Higgs boson to invisible decays can be tested in FCC-ee, eh, and hh

- follows FCC-ee ZH cross section measurement
- for visualization BR(H->inv) = 100%
- 95%CL upper limit using 5ab⁻¹ is 0.47%
- study published using leptonic Z decays in Eur. Phys. J. C (2017) 77: 116
- hadronic Z decays under study. Shows similar performance

- VBF channel most promising at HL-LHC, mono-jet and ttH channels promising at FCC-hh
- Key to control systematic uncertainties
- Preliminary results shown

BSM Higgs Studies: FCC-ee

→Incredible opportunities for BSM Higgs searches

Higgs Self Coupling

$$\sigma_{Zh} = \begin{vmatrix} \mathbf{e} \\ \mathbf{h} \end{vmatrix}^2 + 2 \operatorname{Re} \begin{bmatrix} \mathbf{z} \\ \mathbf{e} \\ \mathbf{h} \end{vmatrix} \cdot \begin{pmatrix} \mathbf{e}^+ \\ \mathbf{e} \\ \mathbf{h} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{e}^+ \\ \mathbf{e} \\ \mathbf{h} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{e}^+ \\ \mathbf{h} \\ \mathbf{e} \\ \mathbf{h} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{e}^+ \\ \mathbf{h} \\ \mathbf{e} \\ \mathbf{h} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{e}^+ \\ \mathbf{h} \\ \mathbf{e} \\ \mathbf{h} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{e}^+ \\ \mathbf{h} \\ \mathbf{h} \\ \mathbf{e} \\ \mathbf{h} \end{pmatrix}$$

- → Very large datasets at high energy allow extreme precision g_{ZH} measurements
- → Indirect and model-dependent probe of Higgs self-coupling

arxiv:1312.3322

arxiv:1711.03978

- → Probing triple-Higgs coupling with double Higgs production
 - Consistency of check of EWSB
 - Reconstructing the Higgs potential
 - Sensitivity through yields and kinematics
 - Large enhancement through BSM possible
 - Exhaustive program at the (HL-)LHC

$$\mathcal{L} = -\frac{1}{2}m_h^2 h^2 - \lambda_3 \frac{m_h^2}{2v} h^3 - \lambda_4 \frac{m_h^2}{8v^2} h^4$$

EFT Lagrangian

Higgs Self Coupling: FCC-hh

→ Enormous di-Higgs samples produced at FCC-hh

- L (FCC-hh) / L (HL-LHC) ≅ 10
- Naively, factor 20 smaller statistical uncertainty

→ Studied a number of final states

• bbyy most sensitive channel

Details in arXiv:1606.09408 and arXiv1802.01607

Higgs Self Coupling: FCC-hh

⇒ bbγγ results

ttH resonant and j(y)y+jets non-resonant background

2d likelihood scan using m_{hh} and $m_{\gamma\gamma}$

 $\delta\mu \cong 2-4\%$

$$\delta x \cong 3-5\%$$

Conclusion

- **⇒Fantastic** prospects to probe the Higgs sector with FCC (ee,eh,hh)
 - unique measurements of g_{ZH} and total width with FCC-ee enable HL-LHC,
 FCC-eh, and FCC-hh Higgs coupling precision measurements
 - precision measurements of Higgs boson properties (coupling [including self coupling], mass, CP)
 - large Higgs samples open new possibilities
 - precision Higgs program needs to be accompanied by precision program for theoretical or parametric uncertainties
 - BSM Higgs physics through direct and indirect measurements
 - synergy and complementarity between lepton and hadron collider Higgs physics

Additional Slides

Dark Photon Searches via Higgs Production

Biswas, Gabrielli, Heikinheimo, Mele

JHEP 1506 (2015) 102 + alxiv: 1/03.00402

Massless Dark Photon $\overline{\gamma}$

$$e^+e^- \to H\bar{\gamma} \to b\bar{b}\bar{\gamma}$$

 $e^+e^- \to ZH \to (\mu^+\mu^-, q\bar{q})(\gamma\bar{\gamma})$

Large effects expected due to

- → Higgs non-decouplings
- → large U(1) couplings in dark sector
- unexplored signatures!
 massless invisible system
- **5** σ sensitivity for BR(H $\rightarrow \gamma \gamma$) ~ 3x10⁻⁴
- 3 times better than LHC @ 300 fb⁻¹ Biswas et al. PRD 93 (2016) 093011

Heavy Neutrinos

- → Low-mass seesaw scenario with 2 sterile neutrinos (N)
- → Studied N decay to h+v in mono-Higgs plus missing energy signature

→ FCC-ee with sensitivity to ly_{ve}l ~ 5x10-3 for m_N ~ 100-300 GeV

Exclusive Higgs Boson Decays

- → First and second generation couplings accessible
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

$$\frac{BR_{h\to\rho\gamma}}{BR_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right]}{0.57 \bar{\kappa}_{b}^{2}} \times 10^{-5}$$

- **→** Also interesting to FCC-hh program
- Alternative H \rightarrow MV decays should be studied (V= γ , W, and Z)
- \rightarrow ~40 events expected in H \rightarrow ρ (ππ) γ

$$H \rightarrow J/\Psi \gamma \longrightarrow y_c$$
 $H \rightarrow \phi \gamma \longrightarrow y_s$
 $H \rightarrow \rho \gamma \longrightarrow y_{u,y_d}$