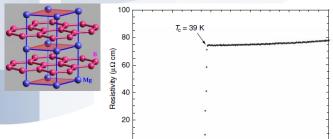
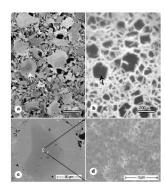


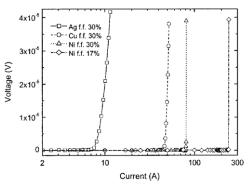
Critical temperature plot



Highest T_c material of the LTS family

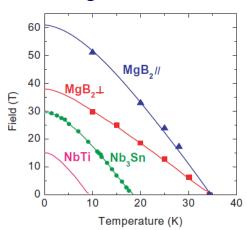

MgB₂ properties

Relatively high Tc, simple structure and common materials

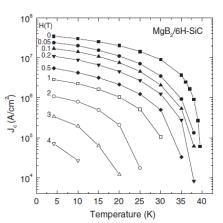

Temperature (K)
Nagamatsu et al. 2001
Superconductivity at 39K in magnesium diboride
Nature 410 63-4

No evidence of "weak link", no need of high degree of texturing

D.C Larbalestrier et al. 2001 Strongly linked current flow in polycrystaline form of the superconductor ${\rm MgB_2}$ Nature 410


PIT process for the fabrication of wire

G.Grasso et .al. 2001 Large transport current in unsintered MgB₂ SC tapes APL Volume 72, number 9


High critical field

100

Iwasa Y et al. 2006 A round table discussion on MgB₂: towards a wide market or a niche production? IEEE Trans. Appl. Supercond 16 1457-64

Large critical current density

Zeng et al. 2003

Superconducting MgB₂ thin film

on silicon carbide substrate by HPCVD

APL 82 2097-9

MgB₂ wire manufacturing companies

Ready for industrial production 2 different manufacturing process ex-situ and in-situ technique

Early stage company, 2013, Based in Cambridge UK granted by UK SMART for R&D activities on MgB₂

Located in Portorico MgB₂ wires for Cryo-free MRI MRI magnet, open 1.5T, 3T Interested in industrial production of wires or wires+magnet

Interested in the MgB₂ technology

Bruker BEST

1000 m of MgB2 wire already demonstrated in collaboration with IFW Dresden

Patents on MgB2 wires
Several R&D activities
Published paper

2003

Columbus Superconductors srl

75% CNR+Researchers 25% ASG

2005

R&D target

First 1.6 km MgB₂ long wire in a single unit length

2006

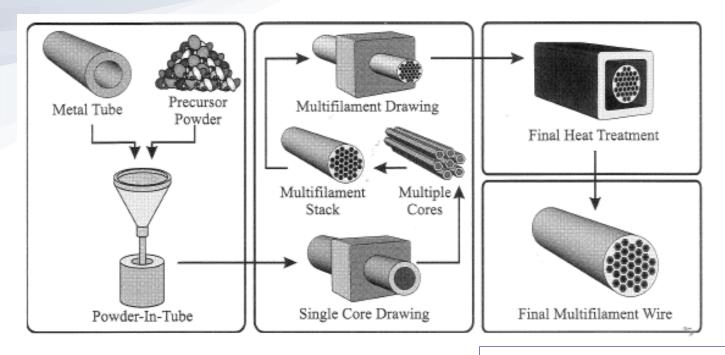
Columbus Superconductors SpA

ASG became the main shareholder to sustain industrial investment and to start the business plan

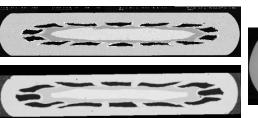
Superconducting wire

Superconducting magnet

MRI

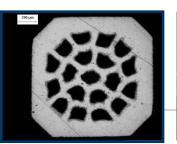

- The actual plant is fully operational for MgB₂ wire production with about 35 employees
- MgB₂ chemical synthesis also fully implemented
- Wire unit length today up to 2- 4 Km in a single piece –length
- It will be possible up to 10 Km with the full scale up of the process
- Columbus MgB₂ tape production for MRI has exceeded 500 Km of fully tested and qualified wires
- Columbus MgB₂ round wires production for cable has exceeded 200 Km of fully tested and qualified wires (end 2015-2016)

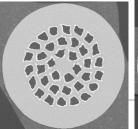
Ex-situ process

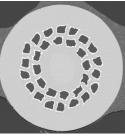


Conductors configuration:


different shape, aspect ratio, number of filaments, materials


Home made MgB₂ powders


Precursor quality, doping synthesis temperature, granulometry

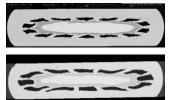


Powder optimization

- Purity and granulometry control
- Grain connectivity
- MgO at grain boundaries
- Pinning and/or doping control

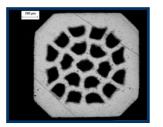
Sheath materials

- Mechanical properties of the raw metals
- MgB₂ / sheath reaction


Deformation process

Drawing-rolling-swaging

Optimization of intermediate (500-800°C) and final thermal treatment (900°C)


Application voted design

Layout of the conductor: shape, dimensions, number of filament Magnetic, electrical, thermal and mechanical properties

High power straigth drawing machine

•39 new machines

- •15 existing machines will be still used over 21,
- •10 main upgrades to the technical infrastructures
- •1 new 2 floors buildiing
- •2.280m² of covered workshop area
- •20 direct production units

20 meter long in-line furnace

Multistep drawing machine

- SEM with EDS
- Optical stereomicroscopes
- **XRD**
- DLS-Particle size analyzer
- **XRF**
- Industrial video cameras for surface defect detecti
- **Eddy currents defect detector**
- Critical current evaluation (10K-30K, field up to 1.8.,

- Quality Control is done through all the process area from incoming raw material to the final product
- Defined responsibility in the control process
- Dedicated operative instructions and procedure
- Real time data collections of production and quality records
- Materials traceability

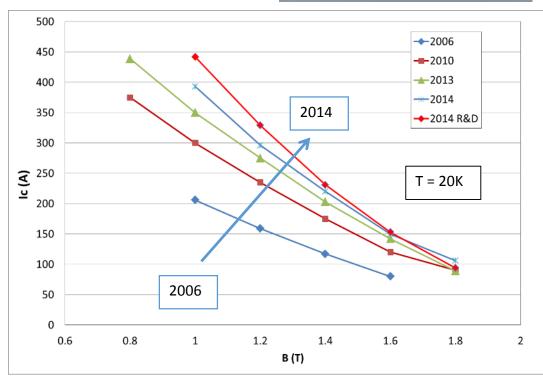
Wire solution for MRI

Wire solution for MRI

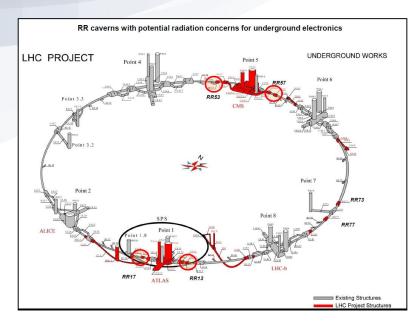
Original MR-Open conductor

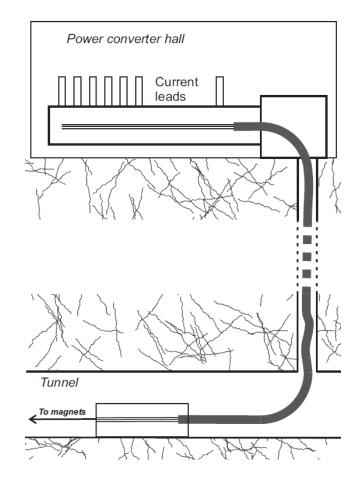
- Wire product we used to validate our MgB₂ technology
- It showed us that MgB₂ can be produced with high yield and low cost – still in production today
- Two-fold improvement in performance 50% less wire needed

Wire layout in 2006:


- 14 filaments
- Unit piece length 1.6 Km

Since 2010:


- 12 filaments
- Improved fabrication process
- Unit piece length 4.0 Km
- Synthesis in controlled atmosphere


Hi-Lumi LHC upgrade SC link project

Development of long superconducting lines for the powering of the LHC magnets via remote power converters

Total currents to be transferred: up to ~ 190 kA per line

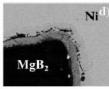
Length: from a minimum of 150 m to a maximum of about 600 m with a significant vertical transfer for the locations where the power converters are to be located at the surface

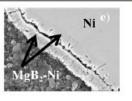
doi:10.1088/0953-2048/27/4/044024

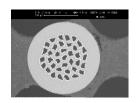
Development of superconducting links for the Large Hadron Collider machine

Amalia Ballarino

CERN, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland


Supercond. Sci. Technol. 27 (2014) 044024


A Ballarino



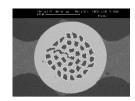
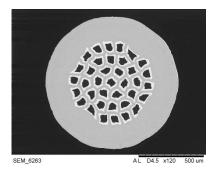



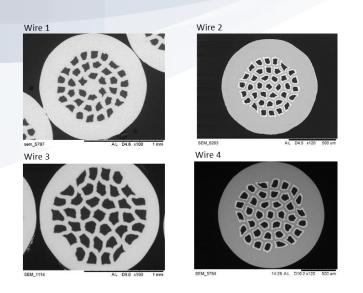
Figure 3. Different generations of MgB_2 Columbus round wires. From left: (a) S1 octagonal wire with nickel matrix and central copper stabilizer surrounded by iron barrier; (b) S2 quasi-square wire with Monel matrix and nickel barrier around the filaments; (c) S3 round wire with Monel matrix and niobium barrier around the filaments; (d) and (e) SEM cross section imaging of wire S2 [8]: porosity and detachment in between the two MgB_2 -Ni reaction layers.

Final configuration diameter: 0.93mm

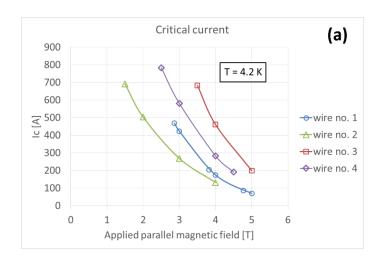
37 filaments

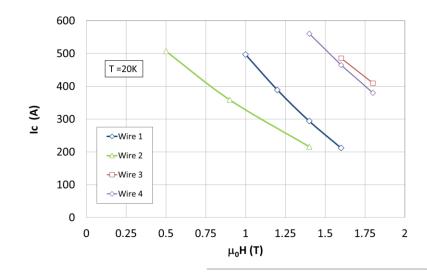
Materials: Monel, Ni, Nb

FF: 11.5%


Copper-Tin electrodeposition

Diameter of MgB_2 wire, Φ	$0.8~\text{mm} \leq \Phi \leq 1~\text{mm}$		
Diameter of superconducting filaments	≤ 60 μm		
Filaments twist pitch	≤ 100 mm		
Filaments twist direction	Right-handed screw		
Critical current at 25 K and 0.9 T	≥ 186 A		
Critical current at 25 K and 0.5 T	≥ 320 A		
Critical current at 20 K and 0.5 T	≥ 480 A		
Bending radius (after final heat treatment)*	≤ 100 mm		
Tensile strain at room temperature*	≥ 0.28%		
Copper fraction of the wire total cross section	≥ 12%		
RRR of copper stabilizer	> 100		
<i>n-value</i> ** @ 25 K and 0.9 T	> 20		


More than 200km already deliverd and qualified



Round wires configuration

Properties	Wire 1	Wire 2	Wire 3	Wire 4
Diameter (mm)	1.3	1	1.5	1.5
Materials	Monel	Monel	Monel	Monel
	Nickel	Nickel Nickel		Nickel
		Nb		Nb
MgB2 fraction	17%	12%	30%	12%
Critical current at 20K, 1T	500A	300A	>650A	>650A
Critical current at 4.2K, 3T	280	400	>700	600
Critcal bending radius	125	100	200	150

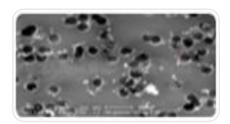
100				,			
F	ellow	Host institution (Supervisor)	WP	PhD enrolment	Start date	Duration	Deliverables
E	SR7	Columbus (G. Grasso)	3	Y (UGENOA)	M6	36M	D2.1, D3.4, D5.1, D5.2, D5.3

Development of MgB₂ wire for high-field magnet applications

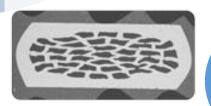
Objectives: Develop a novel MgB₂ wire, which is suitable for use in high field magnets at required current densities in fields above 10 Tesla, operated at liquid helium temperature (~ 4 K), extending today's state-of-the-art conductor only suitable for use in fields below 5 T. Assess the likelihood to extend operation up to 16 Tesla. Work in cooperation with TUW (**ESR12**, **ESR13**) to understand the key performance indicators determining the wire performances and optimise the production process.

Expected Results: Identify viable strategies for production of MgB₂ wire for high-field applications and obtain a suitable wire layout for industrial production (D3.4). Obtain a detailed characterisation of the wire and its performances (D2.1). Produce 5-10 km of MgB₂ wire for CERN suitable for the construction of a magnet coil (D5.1) and document the impact on future accelerator designs. Identify MgB₂ field reach and use-cases in industry and healthcare (D5.3). Develop training contents on MgB₂ wire design and production (D5.2).

Secondment(s): CERN (M6, A. Ballarino, 8 weeks, understand magnet and coil production requirements, wire and coil measurement techniques), TUW (M13, M. Eisterer, 8 weeks, understand wire characterisation methods and impacts of the wire design and the production process on its performance), TUW (M24, M. Eisterer, 8 weeks each, common work on assessment of wire performance for high-field coils and magnets).



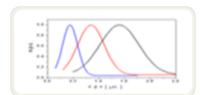
Conductor development x HF application



- B-purity
- Granulometry

Boron

- C-doping
- C-encapsulated B
- Pinning


• FF up to 30-33%

Filling factor

Jc enhancement MgB2 wires Doping and pinning

Particle size

- Number of filaments
- Filaments size
- MgB₂ density
- In field behaviour

- Wire design
- Deformation process

