

Mattia Ortino ESR # 13 @ ATOMINSTITUT – TU Wien

"Characterization of superconducting properties of the next-generation Nb_3Sn and MgB_2 wires"

Tieftemperaturphysik und Supraleitung group

Where, who

Wien

Atominstitut (Tu Wien)

Extra: contact person @

Dr. Simon Hopkins

Outline

1) research description

- Main goals
- Tasks and milestones

2) working plan

- 1st year
- 2nd year
- 3rd year

- 3) challenges
- 4) risks
- 5) state of the art

ESR #13 research description

"Characterization of superconducting properties of the next-generation Nb_3Sn and MgB_2 wires"

- 1. Main goals
- In-depth characterization of new $\mathrm{Nb_3Sn}$ wires pointing to the standards requested by the next 16 T CERN-FCC dipole magnet

• Identification of new ${\rm MgB_2}$ wires performances for next generation 10 T magnets and high current links provided by Columbus Superconductors SpA (collaboration with ESR #7)

ESR #13 research description

"Characterization of superconducting properties of the next-generation Nb_3Sn and MgB_2 wires"

1. Tasks and milestones

- Deep understanding of the state-of-the-art Nb_3Sn wires (with and without APC) & MgB_2 wires;
- Assessment of local properties pre/post high-energy neutron irradiation;
- Examination of micro-nanostructure by SEM/TEM to facilitate correlation between material features and superconducting properties. To be done @ US EM (TU Wien)
- Development of self-built devices for further characterization (VCM, laser calorimeter)

"Characterization of superconducting properties of the next-generation Nb₃Sn and MgB₂ wires"

1st year

Acquisition of experimental techniques knowledge

Squid magnetometry

/ toquisition of experimental teeriniques informedge

SEM/TEM

 Focus on artificial pinning centers rich (APC)-Nb₃Sn wires characterization

Transport current

measurements

Development of a reliable self-built
 Vibrating Coil Magnetometer (VCM) (to be used as valuable device for magnetization measurements)

"Characterization of superconducting properties of the next-generation Nb₃Sn and MgB₂ wires"

2nd year

THE OHIO STATE UNIVERSITY

Work to be done @

(TU Wien)

Nano-included Nb₃Sn wires characterization of different samples

No APC Nb₃Sn wires characterization of different samples

MgB₂ wires characterization

EASITrain network

Further collaborating partners

Heat treatments on unreacted wires

Possible secondments

Production process training/ hands on

"Characterization of superconducting properties of the next-generation Nb_3Sn and MgB_2 wires"

3rd year

Work to be done @

Nano-included Nb₃Sn wires characterization of different samples

No APC Nb₃Sn wires characterization of different samples

 \mbox{MgB}_2 wires characterization

Collection and evaluation of results (comparison, improvements, validation)

Possible secondments

Same or further partners

And finally....

"Characterization of superconducting properties of the next- generation Nb_3Sn and MgB_2 wires"

3rd year

...Ph.D. THESIS WRITING!!

"Characterization of superconducting properties of the next-generation Nb₃Sn and MgB₂ wires"

Meanwhile, through the 3 years...

Scientific dissemination (conferences, public events, high schools)

 Possible publication of the works

 Grants and/or patents hunting (if and when possible)

"Change of plan. The policymakers say they're only willing to listen to the science if we can present our ideas in simple bullet-point format."

ESR #13 challenges

"Characterization of superconducting properties of the next-generation Nb_3Sn and MgB_2 wires"

Managing of two different topics together with devices development

= strict timeorganization required

2. Out-of-box (market potential) constant outlook

Do not focus just on our own work, do not lose curiosity for other SCs and/or related physics projects (events such as SC-Hackathon extremely important)

 Efficient communication (companies, colleagues, administration) e.g. "German is better than English @ work!"

ESR #13 risks

"Characterization of superconducting properties of the next- generation Nb_3Sn and MgB_2 wires"

1. Samples delivering delays ————— Overall the highest risk

2. Dissemination obstacles

Industry/Academic partners possible disagreements (possible collaborations outside the network need to be evaluated)

3. Ph.D thesis delays

The amount of work needs to fit with the times of standard Ph.D career path (6-months delay acceptable)

ESR #13 work state-of-art

"Characterization of superconducting properties of the next-generation Nb₃Sn and MgB₂ wires"

Literature review

VCM further development

Implementation of a reliable feedback-signal via piezo-back voltage

assembling

winding

"Characterization of superconducting properties of the next- generation Nb₃Sn and MgB₂ wires"

0.2

0.2 0.4 0.6 0.8 1.0 $b = B / B_{c2}^*$

Preliminary characterization of the APC wires UNIVERSITY already done (mono, multi-filamentary) Magnetization **TEM** measurements -2ndm+ -2ndm--3rdm+ Pinning analysis 1.0 ■ 12 K + 13 K ▲ 14 K 0.8 × 15 K B_{c2}^{\star} (T) 8 01 F_p / F_p (max) 9.0 9.0 100 nm

T(K)

Courtesy of T.Baumgartner, TU Wien

ESR #13 work state-of-art

"Characterization of superconducting properties of the next- generation Nb_3Sn and MgB_2 wires"

• Preliminary characterization of the APC wires

THE OHIO STATE UNIVERSITY

already done (mono, multi- filamentary)

Courtesy of S.Pfeiffer, TU Wien

.....Thanks for your attention!

..Any question?

