

Cryogenic and thermal properties of superconducting magnet coils

COMMISSARIAT À L'ÉNERGIE ATOMIQUE (CEA - DACM)

UNIVERSITÉ PARIS-SACLAY

ANDREA VITRANO

ESR3 – WP4 Cryogenics

EASITrain - FCC Week 2018

Outline

1. Research topic description	n
-------------------------------	---

- 2. Work plan
- 3. Challenges
- 4. Status

Project Description

Research topic description

Work plan

Challenges

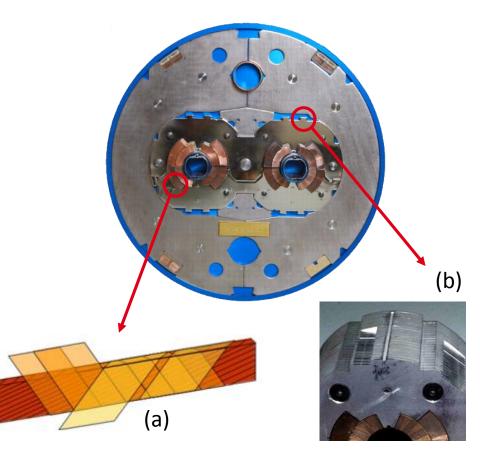
Status

• **Title:** Cryogenic and thermal properties of superconducting magnet coils

Main objectives:

- 1. Understanding the thermal phenomena in superfluid helium in micro-channels
- 2. Achieving improved cryogenic design of magnet coils
- **Task:** Study of heat and mass transfer in superfluid helium in confined geometries

EASITrain 1. Heat transfer in accelerators magnets


Research topic description

Work plan

Challenges

Status

- Magnet cooling is ensured by **He II** to maintain the SC state against generated or deposited heat loads
- Confined geometries constitutes the highest thermal barrier for cooling:
 - Cable electrical **insulation** (a)
 - Space between steel **collars** (b)

DOI: 10.1098/rsta.2011.0453

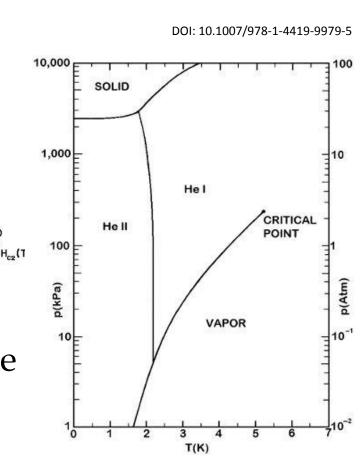
2. Magnet quench and phase transition

J_(A/mm²)

Niobium-titanium

-Nb₃Sn

Research topic description


Work plan

Challenges

Status

During magnet
quenches the energy
dissipation is such that
helium undergoes
phase transitions

• Diverse transient phenomena arise under He phase change

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

5

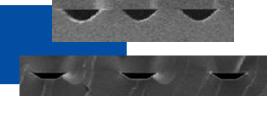
Experimental work

Research topic description

Work plan

Challenges

Status


1. Identification of required **tools**

2. Assembly of the experimental **setup**

3. Thermal measurements in channel geometries

10.1063/1.4706925

4. Development of new micro-size channels

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

Numerical work

Research topic description

Work plan

Challenges

Status

1. He II Transient heat transfer model

Open√FOAM

The Open Source CFD Toolbox

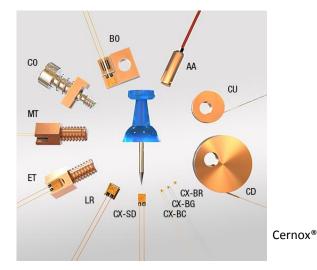
2. He **phase changes** code module

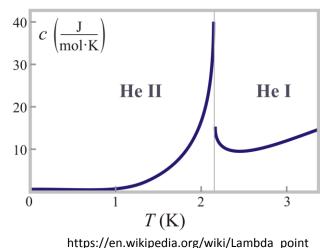
3. Validation of the model

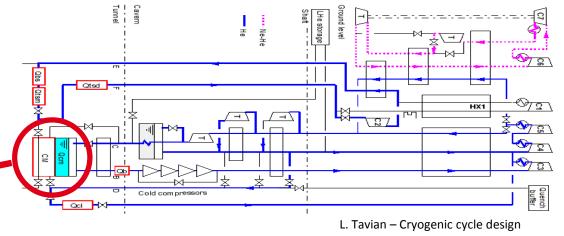
4. Sensitivity analysis

Challenges

Research topic description


Work plan


Challenges


Status

• Experimental challenge: thermal probe accuracy

- Modelling challenge:
 - 2nd order phase change
 - integration of the tool with an overall cryogenic system

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879

Status

Research topic description

Work plan

Challenges

Status

Literature review

Experimental apparatus and materials

Numerical software

Work in progress...

Thank you for your attention

