

FCC Week 2018

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

April 12, 2018

Assessment and optimisation of efficient turbo compressors for light gases (Neon-Helium mixtures)

> ESR15 - Maxime Podeur, MSc ITSM, University of Stuttgart

Background

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Background

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Compressor point of view

- Helium alone too light
 - Low pressure ratio per stage
 - Complex multistage compressor
- Helium leads to high rotational speed and small compressor
 - Low efficiency

Increase the amount of Neon

Cryogenic cycle point of view

- Neon has poor thermodynamic properties at low temperature
 - Larger heat exchangers
 - Higher temperature difference

Decrease the amount of Neon

- Higher pressure drop

A compromise will have to be found!

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Main Objective

Design a turbo compressor optimized for the operation with light-gases (Nelium) and for cryogenic cooling application

Tasks

- Study the impact of light gases on cryogenic cycle and turbomachine performance
- Quantify static and dynamic stresses of the machine
- Qualify different materials and propose design solutions that are suitable for operation with light gases
- Give guidelines for the aerodynamic and mechanical design of the compressor and the manufacturing techniques to be applied

Work plan

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

1st year

- Design of a turbo compressor test rig
- Development of a 0D and 1D model
- Analysis of the impact of light gases on the compressor geometry
- Commissioning of the turbo compressor test stand

- Experimental and numerical measurements of first design
- Study of the effect of varying the gas mixture and implementation in models
- Application on large scale turbo compressors
- Design of two compressors at different gas mixtures

3rd year

- Stay at MAN and work on improvement of concepts
- Experimental and numerical measurements of second and third design
- Fine-tuning of the models
- Reporting

Challenges

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Wide variety of operating gas

Test rig conception

- Helium leakage
- Close loop test rig
- Test rig to build from scratch
- Numerical and experimental measurements in parallel

Risks and mitigation

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Risk	Probability	Severity	How to mitigate them
Difficulty for the compressor manufacturer to meet technical and financial requirements	Medium	Medium	 Early contact Readiness to design it ourselves
Logistical issues with the delivery of test rig components	Medium	Low	 Early order Possible delay taken into account in schedule
Failures and defects on test rig components	Low	Medium	 Preparation of alternative components Possible delay taken into account in schedule
Logistical difficulties with the room preparation	Low	Medium	 Close follow up Possible delay taken into account in schedule
Logistical and manufacturing issues of in-house components	Low	Medium	 Close follow up Possible delay taken into account in schedule
Challenges encountered in the assembly of the test rig	Low	Medium	 Close follow up Possible delay taken into account in schedule
Communication and coordination challenges with other EASITrain team members	Low	Medium	 Regular meeting Communication Definition of the work boundaries

test rig

model

stand

1st year

Development of a 0D and 1D

Analysis of the impact of light

Assembly and commissioning of the turbo compressor test

gases on the compressor geometry and performance

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Tasks P&ID 3D CAD ٠ ٠ Bill of materials Schedule planning 🗸 ٠ Call for offers ٠ Design of a turbo compressor P&ID **3D CAD**

Status

ITSM Institute of Thermal Turbomachinery and Machinery Laboratory

Thank you for your attention!

