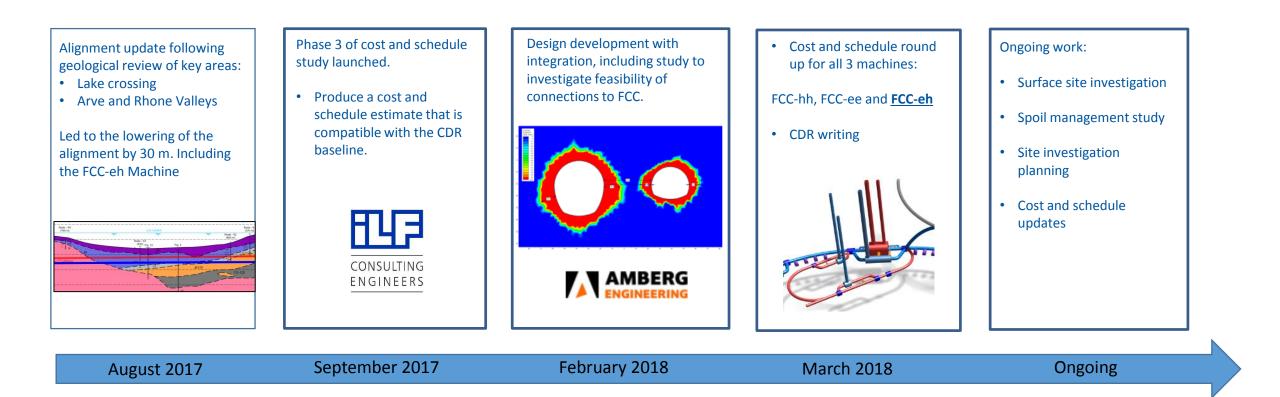


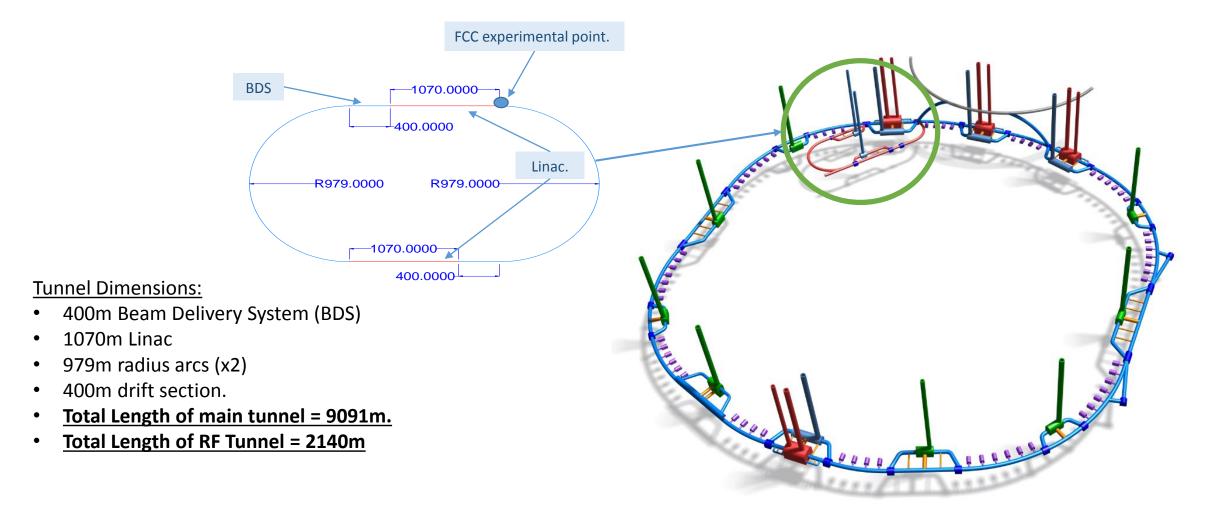
FCC-eh Civil Engineering Developments

FCC week 2018 Amsterdam

J. Osborne, M.Stuart, J.Stanyard



- Civil Engineering study progress since Berlin 2017
- Update on the principal structures
- Tunnel cross-section and Junction cavern layout options
- Alignment and Geology
- Interaction region design
- Construction cost and schedule
- Ground Investigation Planning and Future Steps



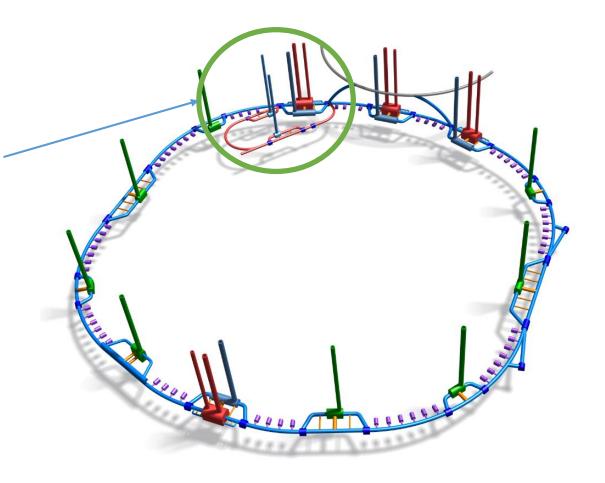
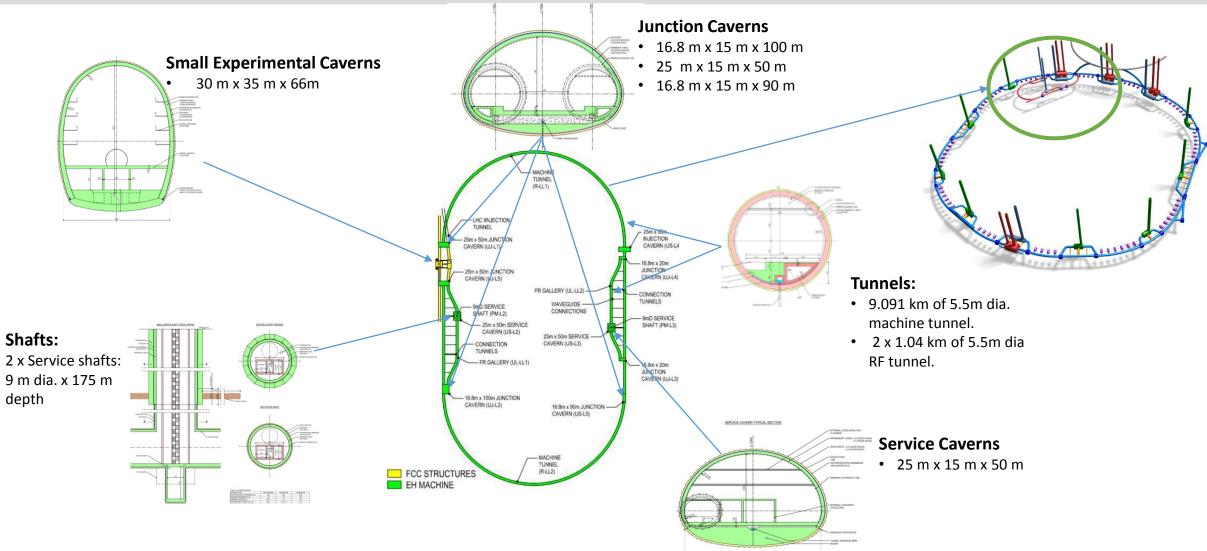
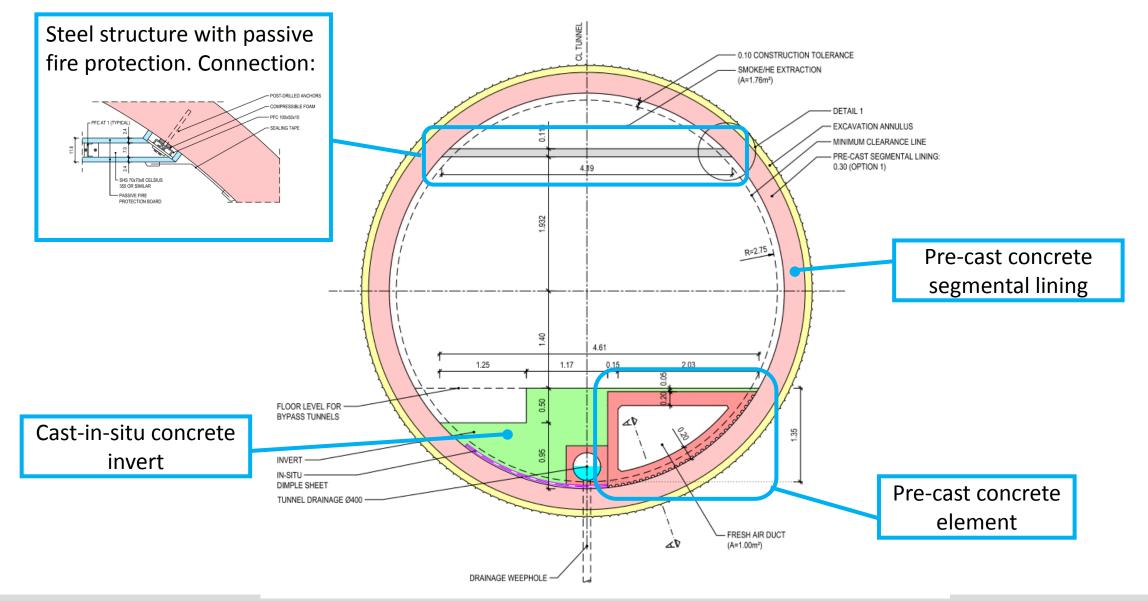
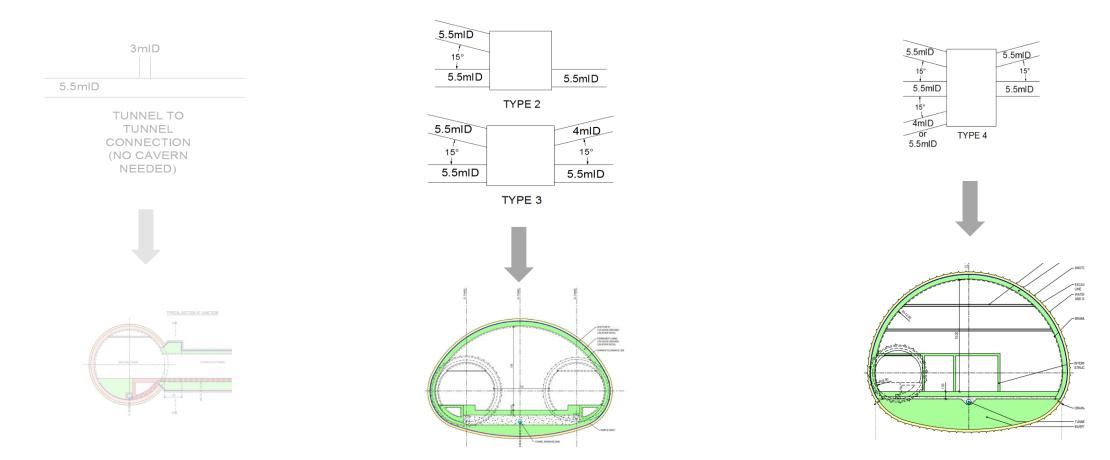


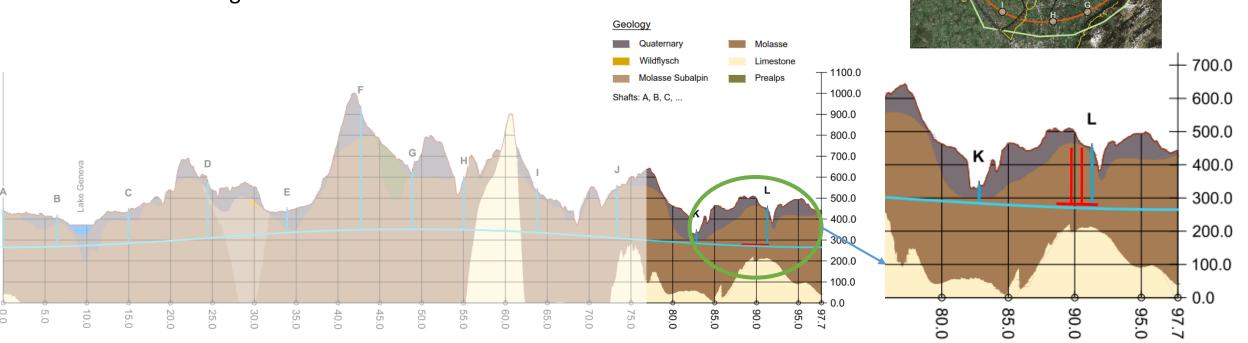
TABLE 12-1: EH MACHINE SCHEDULE OF STRUCTURES


Structure	Quantities	Description	Applicable Section from the Baseline Design
Machine Tunnels	9,091m	5.5mID tunnel	Machine Tunnels
Service Shafts	2No	9mID shaft	9m shaft with same support of the 10mD Experiment Shafts
Service Caverns	2No	25m span, 50m long cavern	Service Cavern
Injection Cavern	1No	25m span, 50m long cavern	Service Cavern
Dump Cavern	1No	16.8m span, 90m long cavern	Junction Cavern
Junction Cavern with the FCC before Point L	1No	25m span, 50m long cavern	Service Cavern
Junction Cavern with the FCC after Point L	1No	25m span, 50m long cavern	Service Cavern
Junction Caverns between Machine Tunnels and FR Galleries	3No	16.8m span, 20m long (x2), 100m long (x1) caverns	Junction Cavern
RF Galleries	2No	5.5m span, 1070m long tunnel	Bypass Tunnel
Waveguide Connections	50No	1mD, 10m long	Klystron Connections
Connection Tunnel	4No	3m span	Connection Tunnels


Scope of FCC-eh Structures

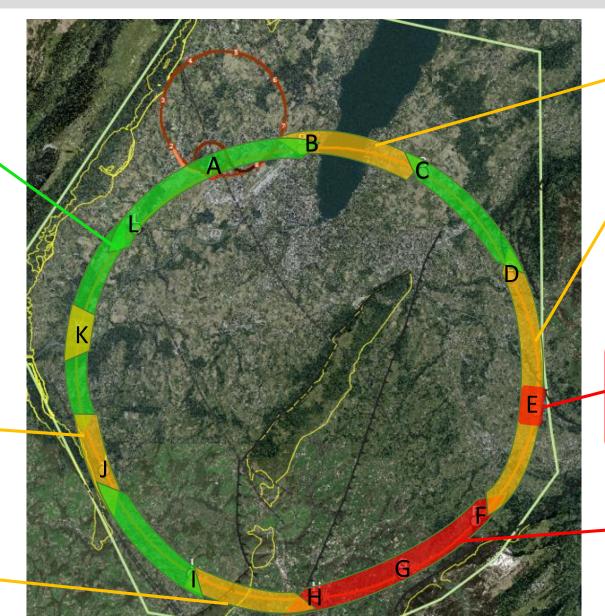


- Junction caverns are required for structural stability when tunnels of similar size connect.
- By evaluating each case individually, it was possible to omit some junction caverns
- The remaining caverns have been grouped into 3 types. (Type 1 below indicates no cavern is needed)
- Types 2, 3 and 4 are utilised for the FCC-eh machine.



After another round of alignment and geological optimisation the FCC-eh machine remains at FCC experimental point L provides the following benefits:

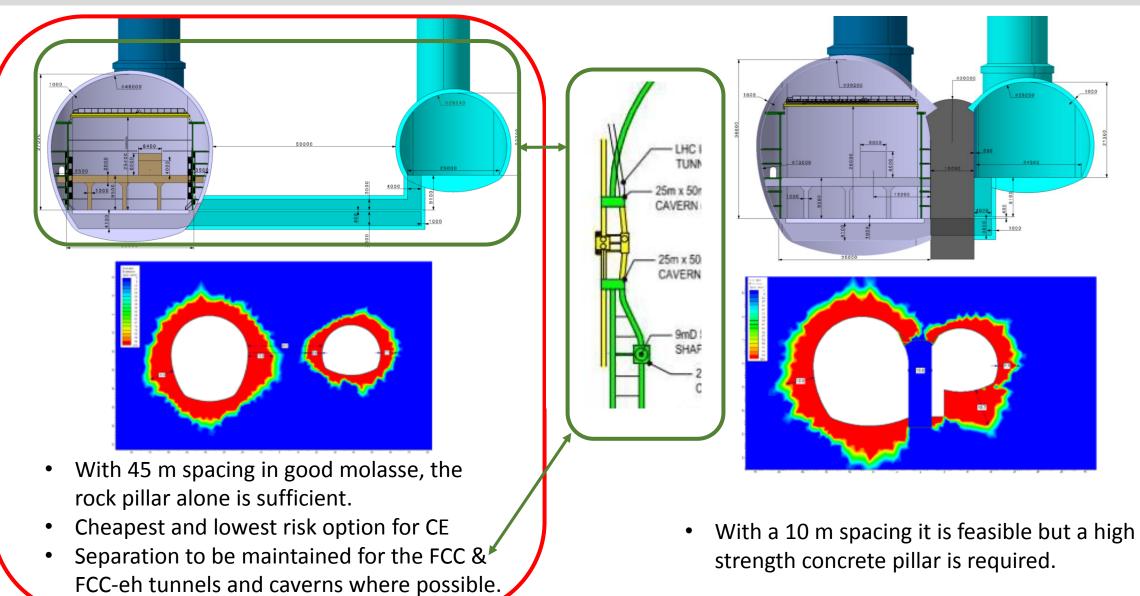
- Lowest risk for construction, lowest geological risk.
- Fastest and cheapest construction
- Close to existing CERN land.


Geological Uncertainty along Alignment

- <u>FCC-eh Located at Point L</u>
- Information near to CERN is strong due to previous experience on LEP/LHC.
- Multiple deep boreholes in the area.

Alignment close to limestone rockhead

 Limestone formation known, but characteristics and locations of karsts unknown.


- Seismic and borehole information for lake crossing from proposed road tunnel, but layered nature of lake bed leads to uncertainty.
- Location of the interface
 between molasse and molasse
 subalpine not certain, tunnel
 alignment in proximity.

- Moraine/molasse interface not certain, cavern close to interface.
- Lack of deep boreholes in area.
- No deep borehole information available in the area.
- Complex faulted region.
- Molasse/limestone interface not certain.

Experimental point layout options

Phase 1

Cost & Schedule estimate for "baseline" single tunnel design.

Phase 2

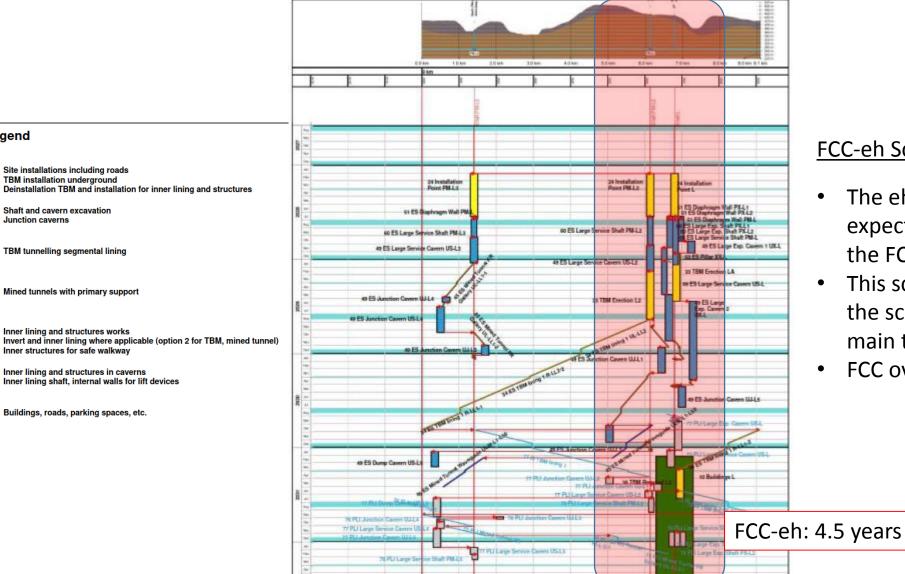
Cost & Schedule implications of variations considered:

- Double tunnel design
- Shallow option
- Alternative tunnel diameters
- Alternative shaft diameters
- Alternative cavern dimensions
- ee machine requirements
- Alternative schedule + Inclined access tunnels

Phase 3

Refinement of results from Phases 1 and 2:

- Review to include updates made to baselined design.
- Incorporate desirable variations from



Legend

Construction Schedule

FCC-eh Schedule Considerations:

- The eh Civil Engineering work is expected to be undertaken as part of the FCC construction
- This schedule is therefore based on the schedule produced for the FCC main tunnel.
- FCC overall CE schedule 6.5 years

TABLE 12-1: EH MACHINE SCHEDULE OF STRUCTURES

Structure	Quantities	Description	Applicable Section from the Baseline Design			
Machine Tunnels	9,091m	5.5mID tunnel	Machine Tunnels			
Service Shafts	2No	9mID shaft	9m shaft with same support of the 10mD Experiment Shafts			
Service Caverns	2No	25m span, 50m long cavern	Service Cavern			
Injection Cavern	1No	25m span, 50m long cavern	Service Cavern			
Dump Cavern	1No	16.8m span, 90m long cavern	Junction Cavern			
Junction Cavern with the FCC before Point L	1No	25m span, 50m long cavern	Service Cavern			
Junction Cavern with the FCC after Point L	1No	25m span, 50m long cavern	Service Cavern			
Junction Caverns between Machine Tunnels and FR Galleries	3No	16.8m span, 20m long (x2), 100m long (x1) caverns	Junction Cavern			
RF Galleries	2No	5.5m span, 1070m long tunnel	Bypass Tunnel			
Waveguide Connections	50No	1mD, 10m long	Klystron Connections			
Connection Tunnel	4No	3m span	Connection Tunnels			

	2011 Dimensions				
	Total length (m)	Diameter/width (m)			
Tunnel	7201	5			
Total Shaft	160	8			
RF Gallery	2842	6			
Shaft Caverns	60	20			
Dump Tunnel	180	5			
Dump Caverns	40	12			
Junction Tunnel	7	6			
Waveguide Boreholes	500	1			
Junction Caverns 1	55	20			
Junction Caverns 2	80	12			

Contributors to cost changes

Tunnel Length for FCC is 9091m Ventilation ducts and fire compartments Included Connection Tunnels between RF Gallery and Main Tunnel. Increased Shaft depth to a total of <u>350m</u> Consultancy and contractors profit % increase Injection Cavern added to structures schedule Price escalation

Spoil Management

Extraction Site	Volume (m ³)					
	Soft Ground	Limestone	Molasses	Total		
Construction Shaft at LHC1	11,031	0	133,735	144,765		
Construction Shaft at LHC2	0	0	202,589	202,589		
Shafts at Point A	26,469	0	791,948	818,417		
Shafts at Point B	35,161	0	326,482	361,643		
Shaft at Point C	181,807	0	385,920	567,727		
First Construction Tunnel at Point D	0	0	709,452	709,452		
Shaft at Point D	15,992	8,806	668,961	693,760		
Second Construction Tunnel at Point D	0	0	235,355	235,355		
Shaft at Point E	6,528	0	174,792	181,320		
Tunnel at Point F	0	1,206	375,414	376,621		
Shaft at Point G	33,086		471,215	504,301		
Construction Tunnel at Point H	0	244,081	750,620	994,701		
Shaft at Point H	0	7,329	421,401	428,730		
Shaft at Point I	6,528	0	796,634	803,161		
Shaft at Point J	6,528	0	805,629	812,157		
Shaft at Point K	13,381	0	610,972	624,353		
Shafts at Point L	29,990	0	671,700	701,690		
Total Spoil Volume	366,500	261,422	8,532,821	9,160,743		

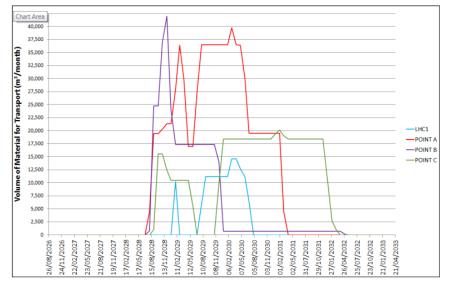


FIGURE 14-1: SPOIL SCHEDULE FOR LHC, A, B AND LHC1

Production of up to 42,000m³ per month 9million cubic meters to dispose Can the molasse be re-used?

Assumed bulking factor of 1.3

Total Spoil volume of FCC-eh = 598,140m³

Ground Investigation Planning

Start of Construction

	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CERN feasibility	CERN conceptual design									
Site Investigation		Feasib		pility SI	Princ	ipal SI	Additional SI as necessary			
]									
Consultant Contracts		Contract and tender strategy		Market Survey	Tender and Award	Preliminary design	Tender design Construct		ion Design	
Construction Contracts								Market Survey	Tender a	nd Award
EIA and permitting documents	El and permitting documentation									

Types of site investigation:

- Collection of existing information
- Walkover survey
- Geophysical investigation
- Boreholes
- Site testing (eg Insitu stress test, point load testing, SPT)
- Rock laboratory testing.

Geothermal site investigation in Satigny 2017/2018 (500m deep)

- A further round of alignment optimisation for FCC following input from surface site investigations and potentially ground investigations.
 - This will require an optimisation of the FCC-eh machine when/if the alignment is optimised.
- Continuing to work with integration to refine designs for all structures and integrate the eh machine with the FCC machine.
- Spoil disposal planning for FCC-eh as part of the overall spoil disposal plan.
- A further cost update to be undertaken to refine the FCC-eh Costs.