## **BSM searches at FCC-eh**

<u>Monica D'Onofrio</u> (University of Liverpool) *for the BSM ep team* [coord. MD, Oliver Fischer, Georges Azuelos]

FCC Week, Amsterdam, April 12th 2018



### Introduction

- ep collider is ideal to study common features of electrons and quarks with
  - EW / VBF production, LQ, multi-jet final states, forward objects
- Broad BSM program at the FCC-eh in terms of
  - Exploration of new and/or challenging scenarios
  - Characterization of hints for new physics if some excess or deviations from the SM are found at pp colliders

#### Differences and complementarities with pp colliders

- Some promising aspects:
- $\rightarrow$  small background due to absence of QCD interaction between *e* and *p*
- $\rightarrow$  very low pileup
- Some difficult aspects:
- $\rightarrow$  low production rate for NP processes due to small s
- Lately, great engagement from theory community working with experimentalists

#### A wide programme of searches on going...

| number  | general                                                                                                                                                                                                               |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1       | Acar, Y. C., Akay, A. N., Beser, S., Karadeniz, H., Kaya, U., Oner, B. B., & Sultansoy, S., FCC Based Lepton-Hadron and Photon-Hadron Colliders: Luminosity and Physics., http://arxiv.org/abs/1608.02190             |  |  |  |  |  |
| _       |                                                                                                                                                                                                                       |  |  |  |  |  |
|         | SUSY (general)                                                                                                                                                                                                        |  |  |  |  |  |
| 2       | Han, C., Li, R., Pan, RQ., & Wang, K., Searching for the light Higgsinos at the CERN LHeC., http://arxiv.org/abs/1802.03679                                                                                           |  |  |  |  |  |
| 3       | S. Kuday, Resonant Production of Sbottom via RPV Couplings at the LHeC https://arxiv.org/abs/1304.2124                                                                                                                |  |  |  |  |  |
| 4       | Hong-Tang, W., Ren-You, Z., Lei, G., Liang, H., Wen-Gan, M., Xiao-Peng, L., & Ting-Ting, W., Probe R-parity violating stop resonance at the LHeC, http://ianl.arxiv.org/abs/1107.4461                                 |  |  |  |  |  |
|         | Long-lived particles - SUSY and beyond                                                                                                                                                                                |  |  |  |  |  |
| 5       | Curtin, D., Deshpande, K., Fischer, O., & Zurita, J., New Physics Opportunities for Long-Lived Particles at Electron-Proton Colliders. http://arxiv.org/abs/1712.07135                                                |  |  |  |  |  |
|         | heavy/sterile neutrinos                                                                                                                                                                                               |  |  |  |  |  |
| 6       | Duarte, L., Zapata, G., & Sampayo, O. A., Angular and polarization trails from effective interactions of Majorana neutrinos at the LHeC., http://arxiv.org/abs/1802.07620                                             |  |  |  |  |  |
| 7       | Antusch, S., Cazzato, E., & Fischer, O. Sterile ,neutrino searches at future \$e^-e^+\$, \$pp\$, and \$e^-p\$ colliders., http://arxiv.org/abs/1612.02728                                                             |  |  |  |  |  |
| 8       | Duarte, L., González-Sprinberg, G. A., & Sampayo, O. A., Majorana Neutrinos Production at LHeC in an Effective Approach, http://xxx.lanl.gov/abs/1412.1433                                                            |  |  |  |  |  |
|         | enemalaus sevulians. Effective Learenzien                                                                                                                                                                             |  |  |  |  |  |
| 0       | anomalous couplings, Effective Lagrangian                                                                                                                                                                             |  |  |  |  |  |
| 9<br>10 | Kuday, S., Saygin, H., Hos, I., & Cetin, F., Limits on Neutral Di-Boson and Di-Higgs Interactions for FCC-he Collider., http://arxiv.org/abs/1702.00185                                                               |  |  |  |  |  |
| 10      | Cakir, I. T., Cakir, O., Senol, A., & Tasci, A. T., Search for Anomalous WWgamma and WWZ Couplings with Polarized \$e\$-Beam at the LHeC, Acta Physica Polonica B, 45(10), 1947 (2014) https://doi.org/10.5           |  |  |  |  |  |
|         | BSM Higgs:                                                                                                                                                                                                            |  |  |  |  |  |
| 11      | Azuelos, G., Sun, H., & Wang, K., Search for Singly Charged Higgs in Vector Boson Scattering at the ep Colliders., http://arxiv.org/abs/1712.07505, see also K. Wang and H Sun: talk at Sept. 2017 workshop           |  |  |  |  |  |
| 12      | Sun H, Luo X, Wei W, Liu T., Searching for the doubly-charged Higgs bosons in the Georgi-Machacek model at the ep colliders, Phys. Rev. D 96, 095003                                                                  |  |  |  |  |  |
|         | compositeness, contact interactions, excited/heavy fermions,GUT                                                                                                                                                       |  |  |  |  |  |
| 13      | Zarnecki: arXiv:0809.2917, hep-ph/0104107                                                                                                                                                                             |  |  |  |  |  |
| 14      | see also new limits from HERA: Zeus Collaboration, 1604.01280 and Zarnecki, 1611.03825                                                                                                                                |  |  |  |  |  |
| 15      | Liu, YB., Search for single production of vector-like top partners at the Large Hadron Electron Collider, http://arxiv.org/abs/1704.02059                                                                             |  |  |  |  |  |
| 16      | Lindner, M., Queiroz, F. S., Rodejohann, W., & Yaguna, C. E., Left-right symmetry and lepton number violation at the Large Hadron electron Collider., Journal of High Energy Physics, 2016(6), 140., https://doi.org/ |  |  |  |  |  |
| 17      | Mondal, S., & Rai, S. K., Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider, Physical Review D, 93(1), 11702. (2016) https://doi.org/10.1103/PhysRevD        |  |  |  |  |  |
|         | top quark FCNC and anomalous couplings (top group)                                                                                                                                                                    |  |  |  |  |  |
| 18      | http://arxiv.org/abs/1701.06932, Denizli H, Senol A, Yilmaz A, Cakir IT, Karadeniz H, Cakir O., Top guark FCNC couplings at future circular hadron electron colliders                                                 |  |  |  |  |  |
| 19      | http://arxiv.org/abs/1703.02691, Wang X, Sun H, Luo X., Searches for the Anomalous FCNC Top-Higgs Couplings with Polarized Electron Beam at the LHeC                                                                  |  |  |  |  |  |
| 20      | http://arxiv.org/abs/1705.05419, Cakir IT, Yilmaz A, Denizli H, Senol A, Karadeniz H, Cakir O., Probing the Anomalous FCNC \$tg\gamma\$ Couplings at Large Hadron electron Collider                                   |  |  |  |  |  |
| 21      | Sarmiento-Alvarado, I. A., Bouzas, A. O., & Larios, F., Analysis of the top-quark charged-current coupling at the LHeC, http://arxiv.org/abs/1412.6679                                                                |  |  |  |  |  |
| 22      | Dutta, S., Goyal, A., Kumar, M., & Mellado, B., Measuring anomalous \$Wtb\$ couplings at \$e^-p\$ collider, http://arxiv.org/abs/1307.1688                                                                            |  |  |  |  |  |
|         | exotic and miscellaneous                                                                                                                                                                                              |  |  |  |  |  |
| 23      | Acar, Y. C., Kaya, U., Oner, B. B., & Sultansoy, S., Color Octet Electron Search Potential of the FCC Based e-p Colliders, http://arxiv.org/abs/1605.08028                                                            |  |  |  |  |  |
| 23      | Hernandez-Sanchez, J., Das, S. P., Moretti, S., Rosado, A., & Xoxocotzi, R., Flavor violating signatures of neutral Higgs bosons at the LHeC, http://arxiv.org/abs/1509.05491                                         |  |  |  |  |  |
| 24      | Das, S. P., Hernández-Sánchez, J., Rosado, A., & Xoxocotzi, R., Flavor violating signatures of heutral Higgs bosons at the LifeC, http://arxiv.org/abs/1503.01464                                                     |  |  |  |  |  |
| 26      | Sahin, M., Resonant Production of Spin-3/2 Color Octet Electron at the LHeC. Acta Physica Polonica B, 45(9), 1811 (2014), https://doi.org/10.5506/APhysPolB.45.1811                                                   |  |  |  |  |  |
| 27      | Ren-You, Z., Hua, W., Liang, H., & Wen-Gan, M., Probing \$L\$-violating coupling via sbottom resonance production at the LHeC, http://lanl.arxiv.org/abs/1401.4266                                                    |  |  |  |  |  |

## Outline

- I will give an overview on on-going studies focusing on a selected list of topics
  - Direct searches for BSM
    - BSM Higgs (new charged higgses)
    - SUSY:
      - RPC (EWK, Higgsinos prompt and long-lived)
      - □ RPV (3<sup>rd</sup> generation squarks)
    - Leptoquarks
    - Sterile neutrinos
    - anomalous couplings (VVV)
  - [in back-up] Indirect impact on search potential for FCC-hh: improved PDF
  - Outlook and summary

#### Aim of this talk:

- $\rightarrow$  report on most recent studies and progress
- $\rightarrow$  brief overview of previously finalized studies
- $\rightarrow$  encourage future studies and synergies



## **BSM Higgs**

- Higgs invisible decays
  - $h \rightarrow Chi0 Chi0 \rightarrow invisible$
- Higgs exotic decays

▶ h → 2 $\phi$  → bb (bb) [arXiV1608.08458]

#### Charged Higgs

H<sup>±</sup>, in Vector Boson Scattering
 [Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505]
 H<sup>±±</sup>, in Vector Boson Scattering [in back-up]
 [H. Sun, X. Luo, W. Wei and T. Liu, Phys. Rev. D 96, 095003 (2017)]

►  $H^+$ , in 2HDM type III,  $p \ e \rightarrow \nu j H \rightarrow \nu j \ cb$ [J. Hernández-Sánchez, etc. 1612.06316]

(see also talk by K. Wang at 2<sup>nd</sup> FCC Physics Week, Jan 2018)

Monica D'Onofrio, FCC Week Amsterdam

Just seen in Uta's talk

1000

## $H\pm$ , $H\pm\pm$ in Vector Boson Scattering

#### Georgi-Machacek Model:

 $H \pm$ 

6

- No fundamental reason for a minimal Higgs sector => extend scalar sector with higher isospin multiplets
- Might generate Majorana mass for neutrinos via type-II seesaw mechanism  $BR(H_5^{\pm} \to W^{\pm}Z) \approx 100 \%$

5 - plet 
$$(H_5^{++}, H_5^{+}, H_5^{0}, H_5^{-}, H_5^{-})$$

[Georges Azuelos, Hao Sun, and Kechen Wang, 1712.07505]

Signal production cross section  $p e^{-} \rightarrow j e^{-} H_{5}^{\pm}, (H_{5}^{\pm} \rightarrow Z W^{\pm})$ 

 $BR(H_5^{\pm\pm} \to W^{\pm}W^{\pm}) \approx 100 \%$ 

2 free pars.  $M(H_5)$ , sin  $\theta_H$ 





Final state:  $1 e^{-} + 1 i + 1 Z(-> l^{+} l^{-}) + 1 W(-> i j); l = e, \mu$ 



## H± in Vector Boson Scattering

#### MVA BDT analysis @ detector-level



Around 500-600 GeV, strong constraints in comparison to the existing (CMS) ones

## H+ in 2HDM type III models

#### • CC production, various scenarios considered $p e^- \rightarrow \nu j H^+ \rightarrow \nu j (c\bar{b})$

Parameters for a few optimistic benchmark points in the 2HDM-III as a 2HDM-I, -II and -Y configuration.

| 2HDM | X  | Y   | Ζ   | $m_H^{\pm} = 110 \text{ GeV}$ |             |
|------|----|-----|-----|-------------------------------|-------------|
|      |    |     |     | cb                            | $\sigma.cb$ |
| Ia   | 5  | 5   | 5   | 0.99                          | 97.36       |
| Ib   | 5  | 5   | 5   | 0.99                          | 99.80       |
| IIa  | 32 | 0.5 | 32  | 0.99                          | 92.00       |
| Ya   | 32 | 0.5 | 0.5 | 0.99                          | 75.12       |

#### @ LHeC with 100/fb only

(Here,  $\varepsilon_b = 0.50$ ,  $\varepsilon_c = 0.1$  and  $\varepsilon_j = 0.01$ , where j = u, d, s, g)

|                          | S     | В      | $\mathscr{S} = \mathcal{S}/\mathcal{B}^{1/2}$ |
|--------------------------|-------|--------|-----------------------------------------------|
| Ia $(X = 5, Y = 5)$      | 243.4 | 3835.1 | 3.9                                           |
| Ib $(X = 5, Y = 5)$      | 249.5 | 3835.1 | 4.0                                           |
| II ( $X = 32, Y = 0.5$ ) | 230   | 3835.1 | 3.7                                           |
| Y ( $X = 32, Y = 0.5$ )  | 187.8 | 3835.1 | 3.0                                           |

Masses O(100 GeV) are very challenging at p-p due to large bkg from multi-jet bkg

Good discovery potential at FCC-eh [ work in progress ]

#### EWK SUSY sector: higgsinos and more

- SUSY EWK sector remains the most challenging for pp colliders in favored regions of the parameter space
  - Higgsino scenarios (~ mass degenerate, low cross sections)
  - Wino/bino compressed (sleptons heavier than charg/neut)
  - Promptly decaying or long-lived (exp. short lifetimes)



## (prompt) Higgsino

- C. Han, R. Li, R. Pan, K. Wang arXiv:1802.03679
- Clearly a difficult scenario to probe at the LHC (JHEP 1402 (2014) 049)

С



## (long-lived) Higgsino

Curtin, Deshpande, Fischer, Zurita, arXiv:1712.07135 (2017)



## "light" sleptons (m > charg, neut)

#### Sleptons might be a bit heavier than EWKinos

- Motivated by g-2 anomalies
- Would play no role in the decay of charginos and next-to-lightest neutralino - phenomenology unchanged at pp
- At e-p, cross section is enhanced



Preliminary results from [Kechen Wang, Sho Iwamoto, Monica D'Onofrio, Georges Azuelos]
 Monica D'Onofrio, FCC Week Amsterdam
 12 April 2018

#### "light" sleptons (m > charg, neut), long-lived

#### If charginos are long-lived

→ Cross section enhanced with "3-body production"

#### Simple efficiency analysis

- Requiring minimal detection length l<sub>min</sub>
- Charginos (Wino) with selectron



Preliminary results from [Kechen Wang, Sho Iwamoto, Monica D'Onofrio, Georges Azuelos]

## **R-parity violating SUSY**

#### Most studied at e-p colliders

L-number violating terms

 $\lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k^C + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k^C + \epsilon_i \hat{L}_i \hat{H}_u + \lambda''_{ijk} \hat{U}_i^C \hat{D}_j^C \hat{D}_k^C$ 

bilinear terms

B-number violating terms

Various strong constrains from LHC on  $\lambda$  and  $\lambda$ " (from multilepton and multijet searches). At e-p colliders, studies made on stop and sbottom:

#### stop

http://arxiv.org/pdf/1107.4461v2.pdf



Couplings with third gen quarks In e-p production rate depending on: e-d-t:  $\lambda'_{131}$  (constraint: < 0.03)

> Probe RPV LQD terms: In this case  $\lambda'_{131} \times \lambda'_{233}$

FCC-eh potential being re-evaluated: (Ren-You Zhang, Liang Han et al)

## single RPV sbottom production





Recent coupling limits

 $\lambda_{113}' = \lambda_{123}' \le 0.18\,, \qquad \lambda_{231}' = \lambda_{232}' \le 0.45$ 

#### Preliminary results (Sinan Kuday, in prep.)





LHeC can extend the limits of LQD couplings up to 10<sup>-3</sup> for just 1 fb<sup>-1</sup> integrated luminosity at the %95 C.L. with 60 GeV e<sup>-</sup> beam option.

@FCC-eh: expect to have Sensitivity up to 2.5 TeV for  $\lambda'_{113}$ <0.02 [work in progress for FCC CDR]

#### Lepto-quark production

- $\rightarrow$  lately, LQs raised a lot of attention as possible motivation for LHCb anomalies (mostly involving 3<sup>rd</sup> generation LQ)
- > Phenomenology pretty equivalent to SUSY RPV
- At the p-p, mostly pair production (from gg or qq)
  - ) if  $\lambda$  not too strong (0.3 or lower) cross section independent on  $\lambda$



At the LHC, pair production is essentially independent of the LQ-q-e coupling  $\lambda \rightarrow$  pair production abundant

 At the e-p: ideally suited to search for and study properties of new particles coupling to both leptons and quarks



• single, resonant production; sensitive to  $\lambda$ 

## LQ reach at FCC -eh

#### 1<sup>st</sup> generation LQs $\rightarrow$ Current constraints almost there with 3.2/fb @ 13 TeV



(CMS also excluded single production  $1^{st}$  gen LQ < 860 GeV)



#### e-p scenario:

sensitive to  $\lambda << e = \sqrt{4\pi \alpha} = 0.03$ 

Sensitivity of HL-LHC could go to ~2.8 - 2.9 TeV  $\rightarrow$  Close to the reach for FCC-eh  $\rightarrow$  Dependence on  $\lambda$ 

If deviations are found by the end of HL-LHC, FCC-hh will definitely see them, and FCC-eh can characterize those signals!

## LQ reach at FCC -eh

#### 1<sup>st</sup> generation LQs $\rightarrow$ Current constraints almost there with 3.2/fb @ 13 TeV



(CMS also excluded single production 1<sup>st</sup> gen LQ < 860 GeV)



## Sterile neutrinos

- Neutrino oscillations are evidence for non-zero  $m_v$
- Low scale type I seesaw with sterile neutrinos
   → heavy neutrino mass eigenstates with M ~ v<sub>EW</sub>
- ► Neutrino mixing  $|\theta_{\alpha}|, \alpha = e, \mu, \tau \Rightarrow$  Weak current production.

Antusch, Fischer; JHEP **1410** (2014) 094

• Present constraints:  $|\theta_e| \le 10^{-3} \Rightarrow$  sizable cross sections at ep.



## Sterile neutrinos (II)

#### Leading order signatures

| Name          | Final State                                 | Channel [production,decay]          | $ \theta_{\alpha} $ dependency                                                          | LNV/LFV                 |
|---------------|---------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|
| lepton-trijet | $jjj\ell_{lpha}$                            | $[\mathbf{W_t}^{(q)}, W]$           | $\frac{ \theta_e\theta_\alpha ^2}{\theta^2}$                                            | $\checkmark/\checkmark$ |
| jet-dilepton  | $j\ell^{\pm}_{\alpha}\ell^{\mp}_{\beta}\nu$ | $[\mathbf{W_t}^{(q)}, \{W, Z(h)\}]$ | $\left\{\frac{ \theta_e\theta_\alpha ^2}{\theta^2}^{(*)},  \theta_e ^{2^{(*)}}\right\}$ | $\times/\checkmark$     |
| trijet        | jjj u                                       | $[\mathbf{W_t}^{(q)}, Z(h)]$        | $ 	heta_e ^2$                                                                           | ×                       |
| monojet       | ϳννν                                        | $[\mathbf{W_t}^{(q)}, Z]$           | $ 	heta_e ^2$                                                                           | ×                       |

| lepton-quadrijet | $jjjj\ell_{lpha}$                                          | $[\mathbf{W_t}^{(\gamma)}, W]$           | $\frac{ \theta_e\theta_\alpha ^2}{\theta^2}$                                                                     | $\checkmark/\checkmark$ |
|------------------|------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|
| dilepton-dijet   | $\ell_lpha\ell_eta u jj$                                   | $[\mathbf{W_t}^{(\gamma)}, \{W, Z(h)\}]$ | $\left\{\frac{\theta^2}{\left(\frac{ \theta_e \theta_\alpha ^2}{\theta^2},  \theta_e ^{2^{(*)}}\right)}\right\}$ | $\times/\checkmark$     |
| trilepton        | $\ell_{\alpha}^{-}\ell_{\beta}^{-}\ell_{\gamma}^{+}\nu\nu$ | $[\mathbf{W_t}^{(\gamma)}, \{W, Z(h)\}]$ | $\left\{\frac{ \theta_e\theta_\alpha ^2}{\theta^2}^{(*)},  \theta_e ^{2^{(*)}}\right\}$                          | $\times/\checkmark$     |
| quadrijet        | jjjj u                                                     | $[\mathbf{W_t}^{(\gamma)}, Z(h)]$        | $ \theta_e ^2$                                                                                                   | ×                       |
| lepton-dijet     | $\ell^{lpha} j j  u  u$                                    | $[\mathbf{W_t}^{(\gamma)}, Z(h)]$        | $ \theta_e ^2$                                                                                                   | ×                       |
| dijet            | jjννν                                                      | $[\mathbf{W_t}^{(\gamma)}, Z]$           | $ \theta_e ^2$                                                                                                   | ×                       |
| monolepton       | $\ell^{lpha}  u  u  u  u  u$                               | $[\mathbf{W_t}^{(\gamma)}, Z]$           | $ \theta_e ^2$                                                                                                   | ×                       |

- LNV/LFV indicates that an unambiguous signal (with no neutrinos in the final states) for LNV and/or LFV is possible
- Signatures can be prompt or long-lived (displaced vertex)

## Sterile neutrinos (III)

#### Displaced vertices:

- Heavy neutrino-antineutrino oscillations
- Oscillation from  $\Delta m_{\gamma}^2$  Antusch *et al.*; [1709.03797]
- Lepton flavor violation:
- Unambiguous: μ+jets, τ+jets, μτ + jets
- highest sensitivity to  $|\theta_{\epsilon}\theta_{\alpha}|^2$ ,  $\alpha = \mu, \tau$





#### complementarities ee-pp-ep

Antusch et al.; Int. J. Mod. Phys. A 32 (2017) no.14, 1750078

Monica D'Onofrio, FCC Week Amsterdam

12 April 2018

## More: "Effective" majorana neutrinos



## Anomalous gauge coupling

#### > Triple gauge boson vertices WWV, $V=\gamma$ , Z

- Precisely defined in SM
- Parametrise possible new physics contributions to this vertex  $(\Delta \kappa_{\gamma}, \lambda_{\gamma})$
- Current constraints (best from LEP) use various assumptions



Monica D'Onofrio, FCC Week Amsterdam

23

## Anomalous gauge coupling (II)

#### > Triple gauge boson vertices WWV, $V=\gamma$ ,Z

[R. Li, X. Shen, K. Wang, T. Xu, L. Zhang and G. Zhu, 1711.05607]

Process  $p e^- \rightarrow j e^- \mu^+ \nu$ 



Sensitivity ~ 10-3 @ LHeC with 2-3  $ab^{-1} \rightarrow$  Better @ FCC-eh! Work in progress

#### Summary and outlook

- FCC-eh offers a variety of opportunities for BSM searches in a lot of expected and maybe unexpected scenarios
  - LQ and RPV SUSY but also
  - EWK SUSY and DM
  - BSM Higgs
  - Sterile neutrinos
- Prompt and non-prompt signatures are being explored
  - Potential for LLP is huge thanks to the low expectation of bkg
- Ideal to study properties of new particles with couplings to electronquark
- Ideal to improve precision of measurements and searches thanks to PDF improvements (see other talks this conference and in back-up)

#### Great opportunity for new ideas - all being documented in the CDR !

# Back-up

#### *H***±± in Vector Boson Scattering**

Signal via WW-fusion [H. Sun, X. Luo, W. Wei and T. Liu, Phys. Rev. D 96, 095003 (2017)]

Final state:  $\geq$  1 j + 2  $\mu^-$  + MET



#### Measuring the LQ quantum numbers in e-p

#### Quantum numbers and couplings:

- Fermion number:
  - can be obtained from asymmetry in single LQ production, since q have higher x than  $\,\overline{q}\,$
  - At pp: very poor asymmetry precision achievable in single LQ production

$$A = \frac{\sigma_{e^-} - \sigma_{e^+}}{\sigma_{e^-} + \sigma_{e^+}} \begin{cases} > 0 \text{ for } F=2 \\ < 0 \text{ for } F=0 \end{cases} \xrightarrow{q} \xrightarrow{F=2} q \xrightarrow{q} \xrightarrow{F=0} q \xrightarrow{F=0}$$

- o spin
  - At p-p, pair production of LQ-LQ leads to angular distributions which depend on the g-LQ-LQ coupling
     Part part part to look for spin correlations

 $e_L u_L \rightarrow S_3 \rightarrow v_\rho d_L$ 

may need to look for spin correlations

- At e-p,  $\cos \theta^*$  distribution is sensitive to the spin
- vector leptoquarks can have anomalous couplings
- o couple chirally (i.e. to L or R but not both) ?
  - could be probed by measuring sensitivity of cross sections to polarization of the electron beam
- o generation mixing ?
  - does LQ decay to 2<sup>nd</sup> generation?
- $_{0}$   $\,$  BR to neutrino, good S/B in  $\nu j$  channel





## **Contact interactions**

- if new physics enters at higher scales:  $\Lambda > J$ s
- such indirect signatures can be seen as effective 4-fermion interaction

$$\mathcal{L} = \frac{4\pi}{2\Lambda^2} j^{(e)}_{\mu} j^{\mu(q)}; \quad j^{(f=e,q)}_{\mu} = \eta_L \ \overline{f}_L \gamma_\mu f_L + \eta_R \ \overline{f}_R \gamma_\mu f_R + h.c.$$

 $\Rightarrow$  all combinations of couplings  $\eta_{ij} = \eta_i^{(e)} \eta_j^{(q)}; \quad q = u, d$ 

• may be applied very generally to new phenomena

```
A LQ mass >> √s
Planck scale (Ms) of extra dimensional models
compositeness scale
...
```

Sensitivity to fermion radius recalculated with current expectations at the FCC-eh

 $R \rightarrow 3(1.5) \times 10^{-20} m$ 

pessimistic(optimistic) calculations





form factor:  $f(Q^2) = 1 - \frac{1}{6} \langle r^2 \rangle Q^2$  $\frac{d\sigma}{d\Omega^2} = \frac{d\sigma_{SM}}{d\Omega^2} f_e^2(Q^2) f_q^2(Q^2)$ 

Monica D'Onofrio, FCC Week Amsterdam

## Contact interactions (eeqq)

- New currents or heavy bosons may produce indirect effect via new particle exchange interfering with γ/Z fields.
- Reach for Λ (Cl eeqq): VV: ~290 TeV; LL: ~160 TeV



~ equivalent sensitivity at the FCC-hh at least for some of the couplings (same as HL-LHC vs LHeC) but need more calculations!

Monica D'Onofrio, FCC Week Amsterdam

12 April 2018

#### E-p "specific" searches: Instantons



- Instantons  $\rightarrow$  non-perturbative fluctuations of the gluon field
- Photon-gluon fusion process
- HERA recent results start probing interesting theoretical scenarios







#### **Vector Boson Scattering**



Typical cross sections for 2 TeV resonance (c<sub>F</sub>=0, c<sub>H</sub>=1, g<sub>V</sub>=3, 60 GeV x 50 TeV) Heavy Vector Triplet model, D. Pappadopoulo et al., JHEP 1409 (2014) 060, <u>1402.4431</u>

- highly dependent on acceptance and performance of detector
- FCC-eh (2 TeV resonance): S = 0.01 fb,  $B_{EW} = 100$  fb (for comparison, LHC14: S = 0.12 fb  $B_{QCD} = 4.2$  pb  $B_{EW} = 300$  fb) low cross section, but kinematics of signal distinct from background (invariant mass, rapidity of the objects, can use W/Z boosted hadronic decays)
- → Need very good detector performance

## Improving PDFs with the LHeC

xg(x,Q), comparison



- <u>low-x:</u> no current data to constrain x ≤ 10<sup>-4</sup>; better but not much after HL-LHC; rely purely on extrapolation non-linear equations, gluon saturation?
- <u>mid-x:</u> need higher precision for Higgs
- <u>high-x:</u> very poorly constrained limits searches for new, heavy particles



**FCC-eh:** access to much smaller x, larger  $Q^2$ 

# Impact on PDF → also depends on whether LHeC is realized or not

## Potential of FCCeh on PDFs

#### See Stefano and Voica's presentation



Monica D'Onofrio, FCC Week Amsterdam

34

## Impact of PDF: High mass Drell-Yan

 Non resonant searches for ED (interference) sensitive to tails of DY distributions thus to PDF. Predominantly q-qbar



## Impact of PDF @ High x

- large uncertainties in high x PDFs limit searches for new physics at high scales many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as gluino pair production
- For HL-LHC  $\rightarrow$  studied in detail impact of LHeC



## Impact of PDF @ High x

- large uncertainties in high x PDFs limit searches for new physics at high scales many interesting processes at LHC are gluon-gluon initiated: top, Higgs, ... and BSM processes, such as gluino pair production
- For HL-LHC  $\rightarrow$  studied in detail impact of LHeC



Monica D'Onofrio, FCC Week Amsterdam

12 April 2018

## Impact of PDF @ High x: FCC

- FCC-hh reach up to 13(16) TeV for gluino pair production, 17(20) TeV for nondecoupled squark/gluino for 3(30)/ab<sup>-1</sup>
- Similar x range for the sensitive region
   (<x> ~ 0.4) → ~40-50% uncertainties on the
   prediction of gluon-gluon initiated processes
  - Might be an issue also for central values

#### Other aspects might play a non-negligible role:

**Top PDF:** at the very high Q2, top becomes small and will have to be included as 6F PDFs





Mass scale [TeV]

