FCC-hh beam vacuum concept: design, tests and feasibility

Francis Perez (ALBA) on behalf of EuroCirCol WP4

EuroCirCol: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.
EuroCirCol: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.'
Outline

1. FCC-hh cryogenic beam-vacuum requirement in the arcs
2. FCC-hh beam screen design
3. Gas Density profile
4. Measurements of Prototypes
5. Progress with laser treatment for ecloud mitigation
6. Gas adsorption/desorption dynamics and SEY
7. Conclusions
FCC-hh cryogenic beam-vacuum requirement in the arcs

The challenge:
\(\times 100+ \) higher synchrotron radiation power density

<table>
<thead>
<tr>
<th></th>
<th>FCC-hh</th>
<th>Present LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton energy [TeV]</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>Temperature of cold mass [K]</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Number of bunches at 25 ns</td>
<td>10600</td>
<td>2808</td>
</tr>
<tr>
<td>Bunch population ([10^{11}])</td>
<td>1</td>
<td>1.15</td>
</tr>
<tr>
<td>SR photon flux [ph s(^{-1})m(^{-1})] above cut-off at 4 eV</td>
<td>1.34x10(^{17})</td>
<td>2.02x10(^{16})</td>
</tr>
<tr>
<td>Arc SR heat load per beam [W m(^{-1})]</td>
<td>28.4*</td>
<td>0.17</td>
</tr>
<tr>
<td>* Bending synchrotron emission power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR critical energy [eV]</td>
<td>4300</td>
<td>44</td>
</tr>
</tbody>
</table>

Required gas density in the arcs < 1x10\(^{15}\) H\(_2\)/m\(^3\) (equivalent to 100 hrs nuclear beam-gas scattering lifetime)
Progress with the FCC-hh beam screen design

As a consequence of the higher SR power density:

- The **mass flow of gas** in the cooling channel must be increased. The diameter of the channel has to be increased to avoid too high pressure drop.

- The **beam screen temperature** must be increased in the range **40 to 60 K**, as compared to the 5 to 20 K in LHC, to reduce the needed cryogenic power. The higher temperatures have large repercussions on the vacuum due to higher *equilibrium vapour pressures*.

- There is an increased photo-desorption due to an higher number of photons (x6 above cut-off at 4 eV). **Higher effective pumping** is needed.

Consequence: The present LHC beam is not adapted for the FCC-hh.
Progress with the FCC-hh beam screen design

In the last three years, the beam screen design has been modified several times to attain:

• Improved **heat transfer** (*as cold spray copper ring in the outer surface*)
• Reduced **transverse impedance** (*symmetric cross section*)
• Higher **pumping** efficiency (*larger pumping holes*)
• Easier **manufacturing** (*polygonal shape*)
Progress with the FCC-hh beam screen design

Last year a conceptual change was done, by going from **Reflection** to **Absortion** concept, in order to reduce the undesired **SR scattering** and in addition, reduce the head load in the interconnection section.

- Remove the deflector
- Introduce Saw-tooth
- Re-design for simplification (*remove rips, thickness*)
Beam Screen Design

condensed gas
1.9 K Cold bore
free gas molecules
primary chamber
s.c. photons
p+ beam
secondary chamber
pumping holes
He
40-86 K
40-60 K

cooling channels
sawtooth surface finishing

LASE
perforated baffles
Amsterdam – April 2018
Beam Screen Design

C. Garion, J. Fernandez Topham & C. Duclos

Francis Perez, on behalf WP4-EuroCirCol: FCC-hh beam vacuum concept: design, tests and feasibility
Progress with the FCC-hh beam screen design

Optimisation of thermal load to the cold bore

Beam screen supports

Cold bore: 1.9 K

11.11 mW

10.6 mW

11.25 mW

10.2 mW

Average temperature on the whole support: 35.2 K

(51.6K @57K)

Total heat load transferred: 49.9 mW/set

Assuming one set per 0.6 meter: 83.2 mW/m
Progress with the FCC-hh beam screen design

Heat transfer to the cold bore

1. Nuclear scattering: 191 mW/m
2. Synchrotron radiation: 0.5 mW/m
3. Thermal radiation: 2.3 mW/m
4. Beam screen supports: 83.2 mW/m
5. Image currents
6. Electron cloud effect

Max power allowed: 300 mW/m

Total thermal load transferred to cold bore: 277 mW/m
MB MOLECULAR DENSITY PROFILE

See Poster:
Photon tracing and gas-density profiles in the FCC-hh - Ignasi Bellafont

Francis Perez, on behalf WP4-EuroCirCol: FCC-hh beam vacuum concept: design, tests and feasibility
Prototypes measurements at KIT

FCC-hh test area

FCC-hh & KARA set-up:
- Identical power
- Similar ph. Spectrum

SR from KARA’s dipole
Prototypes measurements at KIT

Prototype #1 July-Oct ’17
#1: Validation of temperature profile and validity of photon reflector

Prototype #2 Jan-May ’18
#2: #1 + Electrode for photoelectron current measurements

Prototype #3 June-Aug’18
#3: Surface treatments as for baseline. Updated internal screen and pumping slots. Substitution Reflector for Sawtooth

Attend Presentation, today at 8:50:
FCC-hh beam vacuum: Test results at KARA - Luis Antonio Gonzalez Gomez
Progress with NEG and laser treatment for e-cloud mitigation

Investigation at STFC includes:
- Laser scan speed
- Laser wavelength

Attend Presentation, today at 10:50:
NEG Coatings LASE electron cloud mitigation techniques - Oleg Malyshev
Progress with NEG and laser treatment for e-cloud mitigation

And see posters:

• A facility for studying SEY from LASE surfaces at cryogenic temperatures - Sian Taaj
• A progress with further developing of laser ablating surface engineering (LASE) for e-cloud eradication in particle accelerator - Reza Valizadeh
• NEG coating: associated problems and solutions - Oleg Malyshev
• New LASE surfaces obtained with various lasers and their parameters for e-cloud mitigation - Sian Taaj
• Vacuum Properties of Single Metal Zirconium Non-Evaporable Getter Coating - Ruta Sirvinskaite
Gas adsorption/desorption dynamics and SEY

Attend Presentation, today at 9:30:
Beam Screen surface characterisation for high energy beams: test results at Frascati - Roberto Cimino

And see Poster:
Study of Vacuum stability and desorption processes at low temperature for various FCC-hh candidate materials - Luisa Spallino
Conclusions

1. Design of the beam screen concept changed from Reflection (Deflector) to **Absortion (Saw-Tooth)**.

2. The optimisation of the beam screen is completed; thermal, mechanical and vacuum behaviours are fully simulated.

3. The **dipole-end photon absorber** has been optimised and engineering design is in progress.

4. At the **KARA’s set-up**, two prototypes have been measured and a third one will be tested in few months.

5. The optimisation of the **laser treatment** for the mitigation of electron cloud is ongoing. First samples have been produced. A beam screen prototype is being tested in the KARA’s setup. **Impedance issues are under investigation**.

6. Study of **gas adsorption effects on SEY is progressing**. The laser treated surfaces are being measured.
Thanks for your attention!