### HTS TI-based coatings for the FCC-hh beam screens A. Leveratto





Amsterdam, 10th April 2018









#### S. Calatroni CERN GENÈVE VIENNA GENOVA h ee he E. Bellingeri C. Ferdeghini M. Putti R. Vaglio $\overline{\mathbf{O}}$ **EASItrain** A. Saba

### HTS TI-based coatings for the FCC-hh beam screens

#### A. Leveratto

Amsterdam, 10th April 2018



- M. Eisterer
- S.Holleis
- T. Baumgartner





### Outline





10<sup>11</sup> protons will circulate in bunches in the ring at v≈c

> Proton are charged -> it will produce an EM field

The EM Field will produce an image current in the screen

The image current will dissipate

Due to the delay, it will affect back the beam causing instabilities.

## Project introduction







The surface resistance of copper at 50 K may not be sufficiently low to guarantee a safe operational margin for the FCC-hh beams (in particular at injection energy).

## Project introduction







#### HTS films requirements for beam screen

T=50 K Very high operation temperature

#### B=16 T Very High magnetic field

#### f=1GHz Very high frequency

- High synchrotron radiation intensity
- Boundary materials with 100 TeV particles (only supernova burst can exceed this energy)

## Why HTS?







### Why HTS? Surface impedance

|      | YBCO                                                                                                                                 | <b>TI-1223</b>                                                                                                                         |
|------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| PROs | <ul> <li>Safe</li> <li>Very high Jc</li> <li>Very high steep Hirr</li> </ul>                                                         | <ul> <li>High Tc</li> <li>High Jc</li> <li>High Hirr</li> <li>Very tolerant for out<br/>stoichiometry</li> <li>Ag substrate</li> </ul> |
| CONS | <ul> <li>Strong weak link problems</li> <li>Low Tc</li> <li>Very expensive and complex preparation on large scale (IBAD,)</li> </ul> | <ul><li>Toxic</li><li>Weak link?</li></ul>                                                                                             |
|      | $\sqrt{\frac{H}{H}} = \sqrt{\frac{16T}{80T}} = 0.45$                                                                                 | $\sqrt{\frac{H}{H}} = \sqrt{\frac{16T}{140T}} =$                                                                                       |

$$Z_{sf} = Z_n \sqrt{\frac{H}{H_{c2}}}$$

Joffre Gutiérrez Royo **ICMAB** 

 $\sqrt{80T}$ 

 $\sqrt{H_{c2}}$ 



 $\sqrt{H_{c2}}$ 







### Why HTS? HTS vs copper

<u>Depinning frequency > rigid-fluxon model</u>

S. Calatroni, et al. 2017 SUST 30 075002

Assuming:

(conservative estimate)

 $\rho_n = 40 \ \mu\Omega cm$ 

 $B_{c2}$  (50K) = 70T

 $J_c \sim 10^8$  to  $10^9$  A/m<sup>2</sup>







### Why HTS? HTS vs copper

<u>Depinning frequency > rigid-fluxon model</u>

S. Calatroni, et al. 2017 SUST **30** 075002

Assuming:

(conservative estimate)

 $\rho_n = 40 \ \mu\Omega cm$ 

 $B_{c2}$  (50K) = 70T

 $J_{c} \sim 10^{8}$  to  $10^{9}$  A/m<sup>2</sup>

At low frequencies, where the most unstable modes are predicted for a copper beam screen, a substantial gain of several orders of magnitude is clearly apparent



## Why HTS? Why Thallium based?

#### IT WEARS QUITE WELL ALL THE REQUIREMENTS

### thanks to the electrochemical deposition coatings **ONCE WE GOT THE "RECIPE"...**

Large scale production could be achievable





## Sample preparation

#### 1st standard approach



Ag/Ag+ Ag/AgCI

working electrode Metallic Substrate

 $TINO_3 +$  $Bi(NO_3)_3 \cdot 5H2O +$  $Sr(NO_{3})_{2} +$  $Ba(NO_3)_2 +$  $CaNO_3 \cdot H2O +$  $Cu(NO_3)_2 \cdot xH2O$ 

in dimethyl sulfoxide (DMSO), SigmaAldrich, 99.9%





#### **1st standard approach**



## Sample preparation



### 2nd approach

### Flat Cell





### Heat treatment 1bar/pure O<sub>2</sub>



## Sample preparation



### Heat treatment 1bar/pure O<sub>2</sub>



## Sample preparation

Thallium (oxide) is volatile above 700-715°C







### First Results









#### THERMAL ETCHING OF SILVER IN VARIOUS ATMOSPHERES\*

#### G. E. RHEAD<sup>†</sup> and H. MYKURA<sup>†</sup>

Investigations were made using interference microscopy of changes in the surface topography of silver specimens heated at 900°C in  $O_2$ ,  $N_2$ ,  $N_2/O_2$  mixtures, a  $N_2/H_2$  mixture and *in vacuo*. The development of both two and three sets of planes on an originally flat surface was studied. The observed development of {111}, {100} and {110} facets when oxygen is present is ascribed to a lowering of the total surface free energy. Measurement of the angle of contact between low index surfaces (surface energy  $\gamma_0$ ) and continuation—random orientation—surfaces (surface energy  $\gamma_{\theta}$ ) show that  $\gamma_0/\gamma_{\theta}$  increases toward unity as the concentration of oxygen is decreased. The results indicate that about 4 per cent more oxygen is adsorbed onto {111} and {100} surfaces and that this anisotropy of adsorption is the main cause of the anisotropy of surface energy in oxygen bearing atmospheres. A comparison of faceting with and without net evaporation indicates that recondensation of silver atoms causes some desorption of oxygen.

### Substrate Issues







#### THERMAL ETCHING OF SILVER IN VARIOUS ATMOSPHERES\*

#### G. E. RHEAD<sup>†</sup> and H. MYKURA<sup>†</sup>

Investigations were made using interference microscopy of changes in the surface topography of silver specimens heated at 900°C in O2, N2, N2/O2 mixtures, a N2/H2 mixture and in vacuo. The development of both two and three sets of planes on an originally flat surface was studied. The observed development of {111}, {100} and {110} facets when oxygen is present is ascribed to a lowering of the total surface free energy. Measurement of the angle of contact between low index surfaces (surface energy  $\gamma_0$ ) and continuation—random orientation—surfaces (surface energy  $\gamma_{\theta}$ ) show that  $\gamma_0/\gamma_{\theta}$  increases toward unity as the concentration of oxygen is decreased. The results indicate that about 4 per cent more oxygen is adsorbed onto {111} and {100} surfaces and that this anisotropy of adsorption is the main cause of the anisotropy of surface energy in oxygen bearing atmospheres. A comparison of faceting with and without net evaporation indicates that recondensation of silver atoms causes some desorption of oxygen.

### Substrate Issues

For large scale production we should start thinking about a silver coating instead to a silver substrate



WHILE

STARTING

**TO STUDY** 

WITH A

# for thallination

## Alternative method Breaking and tilting of the pellets



#### **Quant Results View**

Viewed Data: Multiple Spectra

Result Type: Atomic % 💌

|            | Spectrum Label | • | 0     | Ca    | Cu    | Sr    | Ag   | Ba    | ті   | Pb   | Bi   |
|------------|----------------|---|-------|-------|-------|-------|------|-------|------|------|------|
| Spectrum 6 |                |   | 41.24 | 9.74  | 24.49 | 13.58 |      | 2.38  | 5.32 | 2.24 | 1.02 |
| Spectrum 7 |                |   | 55.53 | 5.56  | 24.30 | 8.46  |      | 0.73  | 2.88 | 1.81 | 0.73 |
| Spectrum 8 |                |   | 49.43 | 13.76 | 5.13  | 11.52 | 1.05 | 0.76  | 5.99 | 7.62 | 4.74 |
| Spectrum 9 |                |   | 42.94 | 8.10  | 9.24  | 6.69  |      | 18.03 | 2.35 | 4.24 | 8.41 |

**Preparation of TI-1223 pellets** 

> right Tl,Bi,Pb evaporation conditions

Mixture of TI-1223 / TI-1212







## Conclusions & Perspectives

- 1. HTS are promising;
- 2. First superconducting samples has
  - been produced;

- 3. Silver Substrate/coating studies;
- **New Thallination method** 4.



### Conclusions & Perspectives

- 1. HTS are promising;
- 2. First superconducting samples has
  - been produced;

- Silver Substrate/coating studies; 3.
- **New Thallination method** 4.







