Precision calculations for the Z line shape at the FCC-ee

I. Dubovyk^a, A. Freitas^b, J. Gluza^c, K. Grzanka^c, S. Jadach^d, T. Riemann^c, J. Usovitsch^e ^aU. Hamburg, ^bU. Pittsburgh, ^cUS Katowice, ^dIFJ Cracow, ^eU. Dublin

Deriving mass and width of the Z-boson		Completing 2-loops: bosonic corrections [2,3]			
▶ LEP: Collected \simeq 17 $ imes$ 10 ⁶ decays (a few years of	collecting data) [PDG 2017]	Γ ; [MeV]	$oldsymbol{\Gamma}_e, oldsymbol{\Gamma}_\mu, oldsymbol{\Gamma}_ au$	$oldsymbol{\Gamma}_{ u_e},oldsymbol{\Gamma}_{ u_\mu},oldsymbol{\Gamma}_{ u_ au}$	$m{\Gamma}_d,m{\Gamma}_s$
$\Gamma_Z = 2495.2 \pm \Delta \Gamma_Z^{LEP}$,	$\Delta \Gamma_{z}^{LEP} = 2.3 \text{ MeV}$	$\mathcal{O}(\alpha)$	2.273	6.174	9.717
		$\mathcal{O}(lpha lpha_{ m s})$	0.288	0.458	1.276
FCC-ee: Expected 10 ¹² Z-boson decays [1]	$\Delta I_Z^{rec} \simeq 0.1$ WeV	$\mathcal{O}(N_f^2 \alpha^2)$	0.244	0.416	0.698
• Other EWPOs are $R_l, R_b, \sin^2 \theta'_{\text{eff}}, \sin^2 \theta^b_{\text{eff}}$, e.g.:	$\Delta R_l^{LEP} = 250 \cdot 10^{-4}$	$\mathcal{O}(N_f \alpha^2)$	0.120	0.185	0.493
	$\Delta R_l^{FCC} \simeq 2 \div 20 \cdot 10^{-4}$	$\mathcal{O}(lpha_{ m bos}^2)$	0.017	0.019	0.058
Huge statistics and precise systematics and beam energy — Fine theoretical tests of the Standard Model or its extensions		$\mathcal{O}(\alpha_{\rm t}\alpha_{\rm s}^2,\alpha_{\rm t}\alpha_{\rm s}^3,\alpha_{\rm t}\alpha_{\rm s}^3,\alpha_{\rm t}^2\alpha_{\rm s}^3,\alpha_{\rm t}^3)$	0.038	0.059	0.191
Need for SM corrections at 2,3					

Table 1: Weak 2-loop and QCD 3-loop corrections for various Γ_f Red entries are preliminary, unpublished (March 2018) [3].

Unfolding QED effects and higher order resummation

Fig.: S. Schael et al., Phys. Rept. 427 (2006) 257

Needs for substantially improved theoretical analysis software: ► QED Monte Carlo code of the KKMC-type [S. Jadach et al.]

- Unfolding code of the SMATASY type [M. Grünewald et al.]
- ► Electroweak library of the ZFITTER type [T. Riemann et al.]

Three-loop corrections needed: theory estimations [3]

	δ_1 :	δ_2 :	δ_3 :	δ4:	δ_5 :	$\delta \Gamma_Z$ [MeV]
	$\mathcal{O}(\alpha^3)$	$\mathcal{O}(\alpha^2 \alpha_s)$	$\mathcal{O}(\alpha \alpha_s^2)$	$\mathcal{O}(\alpha \alpha_s^3)$	$\mathcal{O}(lpha_{bos}^2)$	$\sqrt{\sum_{i=1}^{5} \delta_{i}^{2}}$
TH1	0.26	0.3	0.23	0.035	0.1	0.5
TH2	0.13	0.15	0.11	0.017	10-4	$\sqrt{\sum\limits_{i=1}^5 (\delta_i/2)^2} \sim 0.2$
TH3	0.026	0.03	0.023	0.0035	10-4	$\sqrt{\sum_{i=1}^{5} (\delta_i/10)^2} \sim 0.05$

 $_{\tau} | \mathbf{\Gamma}_{\nu_e}, \mathbf{\Gamma}_{\nu_{\mu}}, \mathbf{\Gamma}_{\nu_{\tau}} | \mathbf{\Gamma}_d, \mathbf{\Gamma}_s | \mathbf{\Gamma}_u, \mathbf{\Gamma}_c | \mathbf{\Gamma}_b |$

9.717 5.799 3.857

1.276 1.156 2.006 9.11

0.698 0.528 0.694 5.13

0.493 0.494 0.144 3.04

 $0.058 \ 0.057 \ 0.167 \ 0.505$

0.191 0.170 **0.190** 1.20

Γ_Z

60.22

Table 2: At FCC-ee: $\Delta \Gamma_Z \sim 0.1$ MeV.

TH1 = 0.5 MeV (2016): Estimate of residual uncertainty of theoretical errors for Γ_Z [4]. Does not match the FCC-ee demand.

TH2 = 0.2 MeV: Value derives from TH1 by assuming the uncertainty ("nogo") to be solved ("how-to") by calculating the unknowns at an accuracy of 50%(1 digit). Would be not sufficent.

TH3 = **0.05** MeV: Like TH2, but assuming an accuracy of 10% (corresponding) to a knowledge of 2 relevant digits) for the so far unknown weak 3-loops and QCD 4-loops. Matches the demand.

$$\sigma^{meas} \xrightarrow{\text{KKMC},\dots} \sigma^{real} \xrightarrow{\text{SMATASY},\dots} \begin{cases} \sigma_0 \equiv \sigma^{\text{eff},f} \\ M_Z, \Gamma_Z, \Gamma_f \\ A_{FB}^{\text{eff},f}, A_{LR}^{\text{eff},f} \\ R_b, R_\ell, R_{had} \\ \dots \end{cases}$$

Electroweak pseudo-observables [EWPOs]

$$\left\{ \begin{array}{l} \sigma_{0} \equiv \sigma^{eff,f} \\ M_{Z}, \Gamma_{Z}, \Gamma_{f} \\ A_{FB}^{eff,f}, A_{LR,}^{eff,f} \\ R_{b}, R_{\ell}, R_{had} \\ \cdots \end{array} \right\} \xrightarrow{\text{ZFITTER}, \ldots} \left\{ \begin{array}{l} \sin^{2}\theta_{W}^{eff,f} \\ \Gamma_{f} \end{array} \right\} \leftrightarrow \left\{ \mathbf{v}_{f}^{th}, \mathbf{a}_{f}^{th} \right\}$$

Most complicated 2-loop vertex: Zbb [PLB 2016, [2,3]]: $V_{\mu}^{Zbb} = \gamma_{\mu} [\mathbf{v}_{b}^{th} - \mathbf{a}_{b}^{th} \gamma_{5}] =$

Term δ_5 was unknown in TH1 and was determined in [3] with 4 relevant digits. The δ_5 is 5 times bigger than its assumed uncertainty in TH1!

Next decade: complete 3-loop calculations [3]

$Z ightarrow e^+ \ e^-,$							
Number of	1 loop	2 loops	3 loops				
topologies	1	$14 \rightarrow^{(A)} 7 \rightarrow^{(B)} 5$	$211 \rightarrow^{(A)} 84 \rightarrow^{(B)} 51$				
Number of diagrams	14	2012 → ^(A,B) 880	397690 → ^(A,B) 91472				
Fermionic loops	0	114	13104				
Bosonic loops	14	766	78368				
Planar / Non-planar	14 / 0	782 / 98	65487 / 25985				
QCD / EW	0 / 14	0 / 880	144 / 91328				

Table 3: Presents the number of Z decay Feynman diagrams needed to be calculated for TH3 of Table 2. Tadpoles, products of lower loop diagrams (A) and symmetrical diagrams (B) are not included.

A first tackle might concentrate on the 13,104 electroweak 2-loop diagrams with closed internal fermionic loops, to be determined with a net accuracy of two relevant digits.

References

[1] J. Wenninger et al. Future Circular Collider Study Lepton Collider Parameters FCC-ACC-SPC-0003. https://fcc.web.cern.ch [2] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Phys. Lett. B762 (2016) 184. [3] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, preliminary, to be published, see: J. Gluza, https://indico.cern.ch/event/669224/contributions/2805413/attachments/1581532/2499590/FCC_gluza_TheoryStatus.pdf. [4] A. Freitas, Prog. Part. Nucl. Phys. 90 (2016) 201 doi:10.1016/j.ppnp.2016.06.004 [arXiv:1604.00406 [hep-ph]].

Acknowledgments: Work is supported by the FCC Design Study and by Polish National Science Centre (NCN) 2017/25/B/ST2/01987 and 2016/23/B/ST2/03927-