FCC-ee Beam Polarization and Energy Calibration

Beam Energy measurement by Resonant depolarization

This is a well known method, which has been used to measure particle masses such as the j/ψ at Novosibirsk, the \(m_t \) at HERA and the `T mass at DORIS (DESY). The 2 mass at LEP. It requires transverse polarization of the beams.

Beam polarization

In FCC-ee the e+ and e- beams polarize naturally along the magnetic field by Sokolov-Ternov effect. Excellent levels of asymmetric polarization are expected in FCC-ee at the Z and sufficient at the W.

Polarization Wiggler

The polarization time at the Z is slow, (250 hrs)

\[
\gamma = \frac{1}{\sqrt{1 - v^2}}
\]

It can reduced using asymmetric Polarization wigglers placed in Dispersion-free regions (HF).

8 such units per beam with

\[B = 0.7 \times \frac{1}{(1 - \frac{43cm}{L + 20cm} + \frac{89cm}{B + 6cm} + 8atm + 45.6 GeV + \frac{80.67cm}{(E_{\gamma} = 902 keV) \text{ will provide a polarization level of } P=10\% \text{ in } 1.8H \text{ at } Eb= 45.6 \text{ GeV and } B=+0.67 \text{T (E_{\gamma} = 902 keV) }}\]

Resonant depolarization

A visible depolarization can be realized with a transverse kicker excited at a frequency in resonance with the spin precession frequency. The b+ beam is therefore depolarized and the bunch crossing rate at the Z is \(1/10\).s.

The process has been simulated by I. Koop for FCC-Z with spin precession frequency a.k.a. spin tune kicker excited at a frequency in resonance with the spin precession frequency.

The spin tune is proportional to the beam energy.

Beam energy uncertainties

The proportionality between spin tune and beam energy is rigorously true only if the ring is perfectly planar. A certain number of effects resulting from imperfections in the ring can affect this relation and bias the beam energy calibration.

From spin tune measurement to center-of-mass determination

--- Synchronon radiation energy loss : 0.1% \(9 \text{ MeV (2\% in } 4 \text{ sec) } \text{ calculable to better than } \pm 100 \text{ keV} \) per measurement. W in progress.

--- Beamstrahlung energy loss \(\pm 57 \text{ keV} \) \(0.62 \text{ MeV per beam at } 2 \text{, compensated by RF (Shatilov)} \)

--- Beam energy spectrum without/with beamstrahlung

--- Layout of accelerator with IPs between two arcs well separated from RF

--- \(\Delta E_{\text{z}} = \frac{1}{2}(E_{\text{in}} + E_{\text{out}}) = \frac{1}{2}(E_{\text{in}} + E_{\text{out}} \cos(\Delta \theta_{\text{CM}}/2)) \)

--- E_{\text{z}} vs \(E_{\text{in}} \) asymmetries and energy spread can be measured/monitored in event, using e+ → γ → μ+ events longitudinal momentum shift and spread (Janot)

--- in two minutes at the Z the energy spread and the difference of energy between the two beams can be measured to \(\pm 40 \text{ keV} \)

--- Opposite sign dispersion

Since the two beams circulate in two independent rings it is unavoidable that there will be a residual opposite sign dispersion in both x and y planes. This can bias the center-of-mass energy.

For FCC-ee at the Z in the vertical plane we have: Dispersion of e+ and e- beams at the IP is \(\sqrt{2} \text{abc} \) (b: 28µm)

\[\Delta E_{\text{y}} = \Delta E_{\text{y}} \text{ at } 2 \text{ in the vertical plane} \]

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)

--- \(\sigma = 60 \text{ MeV} \)

--- \(\sigma = 30 \text{nm} \)