REBa₂Cu₃O₇ coated conductors for the FCC-hh collider beam screen

S. Calatroni², P. Chiggiato², E. Garcia-Tabarés², P.González³, X. Granados¹, J. Gutiérrez¹, I. Korolkov³, P.Krkotic⁴, R. Miquel³, J. O'Callaghan⁵, F. Perez⁴, M. Pont⁴, T. Puig¹,

*A.Romanov¹, M. Taborelli²

¹ Institut de Ciència de Materials de Barcelona, Bellaterra (Spain); CERN - The European Organization for Nuclear Research, Geneva (Switzerland); Institut de Física d'Altes Energies, Bellaterra (Spain); ALBA Synchrotron Light source, Cerdanyola del Vallés (Spain); ⁵ Universitat Politècnica de Catalunya, Barcelona (Spain)

Background

The need for lower surface impedance than copper under the operating conditions of the FCC motivates the exploration of high-temperature superconducting coated conductor (HTS-CC) tapes as an alternative coating approach for the beam screen (Fig.1).

As a first assessment for the feasibility of this approach, the surface resistance of YBCO is estimated with the classical rigid-fluxon model based on published electrical transport data at the operating conditions of the FCC (Fig. 2).

For frequencies < 1Ghz, the surface resistance of YBCO is lower than for Cu, thus allowing Metallic substrate (0.5-1 μm) potentially better performance over most of the frequency spectrum of interest.

Now, we are investigating the capabilities of commercially available HTS-CCs as a beam screen under the extreme conditions of FCChh. The specific objectives are:

- 1. Evaluation of surface resistance using classical rigid-fluxon model
- 2. Measurement of SEY
- Examine SC properties after synchrotron irradiation
- 4. Characterise strain distribution of HTS-CC when welded to vacuum chamber*

*not covered on this poster

Depinning Frequency

- $R_n \equiv \text{superconductor surface}$
- resistance at normal state
- $B_{irr} \equiv \text{irreversibility field}$ $\omega_0 \equiv$ depinning frequency

Secondary Electron Yield

T in K

CC sample in UHV chamber for conditioning with e-gun

Ag Protection (0.5-1 μm)

(Fig. 1)

ReBCO (1-2 μm)

Buffers (0.5-1 μm)

- In beam pipes of particle accelerators, an e-cloud can be generated by i.e. photoemission from synchrotron radiation
- Leads to thermal load in vacuum systems, beam losses and more → electron build up has to be minimized (SEY~1)

- Manipulation of tape surface to eliminate e-cloud
 - Surface conditioning
 - Low SEY thin film coatings

Synchrotron Irradiation

- Beam screen coatings have to sustain high synchrotron radiation loads
- HTS tapes were irradiated with high energetic electron synchrotron radiation for a week in ALBA synchrotron
- SC properties of samples before and after irradiation are compared by means of inductive measurements
- For all providers: no decrease of SC properties

 $1-(T_{irr}/T_{c})$

Outlook

- Characterisation of CC at operational conditions
 - Magnetic field $\mu_0 H = 16 T$
 - o RF fields
 - Synchrotron radiation
- Link transport properties to microstructure
- Evaluate SEY and synchrotron activation
- Develop a welding technology between CC and Stainless Steel plates of the chamber compatible with high vacuum
- Evaluate the strain field and mechanical fatigue of the ensemble

erc

European Research Council

Executive Agency

de Catalunya

ACKNOWLEDGEMENTS

Universitario

The research leading to these results has received funding from FCC-GOV-CC-0073 / 0072, 0074 (KE3359, KE3358, KE3360) Additional funds come from ERC (EU ERC-AdG-2014-669504ULTRASUPERTAPE project), EU COST ACTION NanoSC-COST MP1201, MINECO (MAT2014-51778-C2-1-R and FEDER), Generalitat de Catalunya (2017-SGR-1519), Programa excelencia Severo Ochoa SEV2015-0496 and

Ministerio español de Educación, Cultura y

Deporte para la Formación de Profesorado

References:

[1] Calatroni, Sergio, and Ruggero Vaglio; IEEE Transactions on Applied Superconductivity 27.5 (2017): 1-6. [2] Vallgren, C. Yin, et al.; Physical Review Special Topics-

Accelerators and Beams 14.7 (2011): 071001. [3] Krkotic, P. et al.; 'RF performance of high temperature superconducting coated conductor as beam screen for FCChh', Poster FFC week 2018.

*aromanov@icmab.es

