

LHC Status and Physics Update

Iain Bertram Lancaster University, 14 September 2017 GridPP39

- LHC Accelerator Update
- I will present details on recent analyses from LHC experiments (highlighting some Lancaster results and a bias towards ATLAS).
 - Higgs Production Cross Section
 - ATLAS Higgs Mass
 - − ATLAS & CMS: Higgs $\rightarrow b\overline{b}$
 - CMS: Higgs $\rightarrow \tau \tau$
 - ATLAS Resonance Searches & Dark Matter
 - LHCb: Ξ_{cc}^{++}
 - LHCb: $B_s \rightarrow e\mu$
 - Alice: Hypertriton Lifetime
- Summary

Accelerator Status

- Currently ~25 fb⁻¹ delivered to ATLAS and CMS.
- So far it has been a difficult year for LHC
 - Many beam dumps due to issues with "16L2" group of magnets cause unknown - has been limiting luminosity
 - Some progress, but still an ongoing problem.

Main operation limitations: Losses@16L2

□ 8b4e: reduced e-cloud (induced heat-load)

CERNIN

- Fast intensity ramp-up to 1916b without any dump with average intensities 1.1x10¹¹ p/b
- However could not increase intensity more than 1.2x10¹¹ p/b

□ Study is ongoing with additional diagnostics in the cell

Accelerator Status

- Target integrated luminosity of 45 fb⁻¹ is still achievable.
 - Preparation of special physics runs are ongoing
 - High β^* at 450 GeV and 2.51 TeV runs
 - No special runs in 2018 significant luminosity production to satisfy the Run-2 targets (90 fb⁻¹)

Around 11 weeks remaining

	Oct)ct Nov						Dec						
Wk	40	41	42	43	44	45	46	47	48	49	Т	50	51	52
Mo	2	9	16	23	30	6	13	20	27		4	¥ 11	18	Xmas 25
Tu										5				
We				MD 4						hys ic		ochnical	hnical stop (YETS)	
Th										cial p		echinicali		
Fr										Spe				
Sa														
Su														

Di-jet Event with m_{jj}=9.3 TeV

Higgs Boson Production

- New results in the H→ZZ*→4ℓ and H→γγ channels.
 - Combined measurements of fiducial and total production cross sections (assuming SM branching ratios).
- Combined global signal strength compatible with the Standard Model:

$$\label{eq:multiplicative} \begin{split} \mu &= 1.09 \ \pm 0.12 \\ &= 1.09 \ \pm 0.09 \ (\text{stat.}) \ ^{+0.06}_{-0.05} \ (\text{exp.}) \ ^{+0.06}_{-0.05} \ (\text{th.}). \end{split}$$

Higgs Boson Mass

- Higgs boson mass measurements in the H→ZZ*→4ℓ and H→γγ channels complementary:
 - 4ℓ channel the stat uncertainty dominates.
 - γγ channel dominated by syst uncertainties (most notably the γ energy scale calibration).
- Measurements consistent between sub-channels, and consistent with the Run I combined result.

Observation of H $\rightarrow \tau^+ \tau^-$

- Branching ratio (BR) = 6.3%, best channel to establish coupling of Higgs boson to fermions
- 12 categories: VBF, 0-jet (~gluon fusion), boosted (~others), for each $\tau_{\rm h}\tau_{\rm h}$, $e\tau_{\rm h}$, $\mu\tau_{\rm h}$, $e\mu$
- Signal extraction from max. likelihood fits to 2D distributions in signal & control regions
- Significance of 4.9 σ observed (4.7 σ expected) using 13TeV data
- Combination with 7 & 8 TeV data: 5.9σ obs. (5.9σ exp.) and μ = 0.98 \pm 0.18

- Diphoton and ditau searches sensitive to new heavy scalars, e.g. Higgs bosons.
 - γγ search also targets spin-2 (graviton) production with a dedicated selection.
 - $\tau\tau$ searches sensitive to SUSY Higgs (H/A).
- No significant excess over the SM expectation.

- Generic dark matter models tested with searches for mono-jet/ $\chi/Z/H(\rightarrow \chi \chi/bb)+E_T^{miss}$, with recoil against invisible dark matter particle(s).
 - Complementary to direct dark matter searches, and direct searches for the mediator decaying to e.g. a pair of jets.
- Phenomenology depends on mass of DM, mass of heavy mediator and value and type of couplings.

• No significant excesses over the SM predictions.

Observation of Ξ_{cc}^{++}

- Doubly charmed baryons predicted by quark model
- Observation of Ξ_{cc}^+ claimed by SELEX [Phys. Lett. B 628 (2005) 18-24]
- No evidence observed by BaBar, FOCUS, Belle and LHCb
- Search in LHCb for $\equiv_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^-$
- Data sample: 2.0 (8 TeV) + 2.0 (13 TeV) fb⁻¹

- Highly significant peak: 7.6 σ (2012), 12.9 σ (2016)
- Combined yield: 426 ± 39
- The mass is measured with the 2016 sample

 $m(\Xi_{cc}^{++}) = 3621 \pm 0.72 \text{ (stat)} \pm 0.31 \text{ (syst)} \text{ MeV}/c^2$

(a) $\Sigma_{c}^{0} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{++}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}}_{\mathcal{A}_{c},\mathcal{A}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{-}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{Z}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{A}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{A}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \xrightarrow{\mathcal{A}_{cc}^{+}} \underbrace{\mathcal{A}_{cc}^{+}}_{\mathcal{A}_{c},\mathcal{A}_{c}^{-}} \xrightarrow{\mathcal{A}_{cc}^{+}} \xrightarrow{\mathcal{A$

Lattice QCD calculations $m(\Xi_{cc}^{++}) = 3606 \pm 11 \pm 8 \text{ MeV}/c^2$ [arXiv: 1704.02647]

Search for the decays $B^0_{(s)} o e^{\pm} \mu^{\mp}$ NEW

Lepton-flavour violating decays

- No excess of signal observed wrt background
- Put a limit to the BF

 $egin{aligned} \mathcal{B}(B^0_s o e^\pm \mu^\mp) < 5.4 \ (6.3) imes 10^{-9} \ \mathcal{B}(B^0 o e^\pm \mu^\mp) < 1.0 \ (1.3) imes 10^{-9} \ \mathrm{at} \ 90 \ (95)\% \ \mathrm{CL} \end{aligned}$

 Best upper limits to date and a factor 2-3 better than the previous results from LHCb

 Data sample: 1.0 (7 TeV) + 2.0 (8 TeV) fb⁻¹

LHCb-PAPER-2017-031

14

 Understanding of non-perturbative QCD, also sensitive to NLO and higher pQCD corrections ⁵

0000

- Measure double parton scattering (DPS)
- Important background for NP searches

Measurement of the (anti-)hypertriton lifetime in Pb-Pb collisions

 ${}^{3}_{\Lambda}$ H reconstructed in the 3 He- π decay channel (3 He identification via E-loss in TPC) Result fully **compatible with the world-average and with the free** Λ **lifetime Significantly improved uncertainties wrt Run I** (and one of the most precise available measurements)

M.Gagliardi – ALICE status report – LHCC meeting 12/09/2017

CMS SM Results

Exotic Searches

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

 $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$

10 TeV

 $\sqrt{s} = 8, 13 \text{ TeV}$ **Reference**

ATLAS Preliminary

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	1 - 4 j - 2 j $\ge 2 j$ $\ge 3 j$ - 1 J $\ge 2 b, \ge 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mp 7.75 TeV л Ms 8.6 TeV л Mth 8.9 TeV л Mth 8.2 TeV л Mth 9.55 TeV л Mth 9.55 TeV л KK mass 1.75 TeV k/Л KK mass 1.6 TeV Tier	= 2 = 3 HLZ NLO = 6 = 6, M_D = 3 TeV, rot BH = 6, M_D = 3 TeV, rot BH \overline{M}_{PI} = 0.1 \overline{M}_{PI} = 1.0 rr (1,1), $\mathcal{B}(\mathcal{A}^{(1,1)} \rightarrow tt) = 1$	ATLAS-CONF-2017-050 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} {\rm SSM} \ Z' \to \ell\ell \\ {\rm SSM} \ Z' \to \tau\tau \\ {\rm Leptophobic} \ Z' \to bb \\ {\rm Leptophobic} \ Z' \to tt \\ {\rm SSM} \ W' \to \ell\nu \\ {\rm HVT} \ V' \to WV \to qqqq \ {\rm model} \ {\rm B} \\ {\rm HVT} \ V' \to WH/ZH \ {\rm model} \ {\rm B} \\ {\rm LRSM} \ W'_R \to tb \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu \geq$ $1 e, \mu$ $3 0 e, \mu$ multi-channe $1 e, \mu$ $0 e, \mu$	- 2 b ≥ 1 b, ≥ 1J/ 2 J 2 b, 0-1 j ≥ 1 b, 1 J	– – Yes – Yes – Yes	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 1.5 TeV W' mass 5.1 TeV V' mass 3.5 TeV V' mass 3.5 TeV W' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	m = 3% = 3 = 3	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
C	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e, μ 2(SS)/≥3 e,μ	2 j _ ≀ ≥1 b, ≥1 j	– – Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	21.8 TeV η_{LL}^- 40.1 TeV η_{LL}^- $\eta_{RR}^- = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} 1-4 \ j \\ \leq 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	mmmed 1.5 TeV g_q= mmmed 1.2 TeV g_q= M, 700 GeV m()	=0.25, g_{χ} =1.0, $m(\chi) < 400 \text{ GeV}$ =0.25, g_{χ} =1.0, $m(\chi) < 480 \text{ GeV}$ $\chi) < 150 \text{ GeV}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV β = LQ mass 1.05 TeV β = LQ mass 640 GeV β =	= 1 = 1 = 0	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	$\begin{array}{c} 0 \text{ or } 1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \\ 2 / \geq 3 e, \mu \\ 1 e, \mu \\ 2 / = 3 e, \mu \\ 1 e, \mu \\ 1 e, \mu \end{array}$	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 2 \ J, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J/ \\ \geq 4 \ j \end{array}$	j Yes j Yes 2j Yes j Yes - 2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass 1.2 TeV B(1) T mass 1.16 TeV B(1) T mass 1.35 TeV B(1) B mass 700 GeV B(1) B mass 790 GeV B(1) B mass 790 GeV B(1) Q mass 690 GeV B(1)	$T \rightarrow Ht = 1$ $T \rightarrow Zt = 1$ $T \rightarrow Wb = 1$ $B \rightarrow Hb = 1$ $B \rightarrow Zb = 1$ $B \rightarrow Wt = 1$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton l^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes - -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6,0 TeV only q* mass 5,3 TeV only b* mass 2.3 TeV only b* mass 1.5 TeV fs = 1 v* mass 3,0 TeV A = 1 v* mass 1.6 TeV A = 1	y u^* and d^* , $\Lambda = m(q^*)$ y u^* and d^* , $\Lambda = m(q^*)$ = $f_L = f_R = 1$ = 3.0 TeV = 1.6 TeV	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, µ 2,3,4 e, µ (SS 3 e, µ, τ 1 e, µ - -	2j - 1b - - - $\sqrt{5} = 12$	- - Yes - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N° mass 2.0 TeV m(H ^{±±} mass 870 GeV DY H ^{±±} mass 400 GeV DY spin-1 invisible particle mass 657 GeV DY multi-charged particle mass 785 GeV DY monopole mass 1.34 TeV DY	$\begin{split} \mathcal{W}_{\mathcal{R}}) &= 2.4 \text{ TeV}, \text{ no mixing} \\ \text{production} \\ \text{production}, \mathcal{B}(\mathcal{H}_{L}^{\pm\pm} \to \ell \tau) = 1 \\ \underset{n-res}{\text{no-res}} = 0.2 \\ \text{production}, \mathbf{q} = 5e \\ \text{production}, \mathbf{g} = 1g_{D}, \text{ spin } 1/2 \end{split}$	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059
						10 ⁺ 1 10	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

- LHC Run 2 is in full swing hundreds of results with more expected
 - ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
 - CMS: <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>
 - LHCb: <u>http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_all.html</u>
 - Alice: http://aliceinfo.cern.ch/ArtSubmission/submitted
- These results rely on the efforts of the Grid community and the computing resources supplied by the UK.