
ZFS and other things

Itinerary

• Part 1: ZFS

• Part 2: ^ZFS

ZFS

Brief History
• 2005: Development starts at Sun Microsystems (for Solaris)

• 2006: In OpenSolaris (open-sourced implementation via CDDL)

• 2006: ZFS on FUSE [to avoid CDDL/GPL incompatibility]

• 2007: Ported to FreeBSD

• 2008: ZFS For Linux project begins at LLNL

• 2010: Oracle acquires Sun, closes original ZFS source (killing their fork of ZFS
by 2017)

• 2010: illumos fork the last CDDL release of ZFS to continue project.

• 2013: Initial public launch of ZFS for Linux, start of OpenZFS project.

• 2016: ZFS for Linux bundled in Ubuntu distribution repos.

Reiser3 devel starts : 2001
Rieser4 devel starts : 2004

Reiser4 devel stalls as Hans : 2008
Reiser convicted of murder.

btrfs devel starts (at Oracle!) : 2007

btrfs RAID still unstable : 2017

ZFS on Linux

• Part of OpenZFS collaboration

• Development separate but parallel to BSD/illumos ZFS

• (feature sets are overlapping, but neither is a subset of
the other)

• Current release is 0.7.1 [Aug 2017], a bug fix of 0.7.0 [Jul
2017].

Why ZFS?
• Features:

• file checksumming

• file compression (w/ almost zero CPU overhead)

• transparently resizable filesystems

• software "data-aware RAID" (actually filesystem level
erasure coding)

• automated self-repair

• snapshot (and replication) support

Why not ZFS?
• Needs control of disks (ideally)

• Issues with RAID controller "poor-man's JBOD"

• Historically tricky to configure perfectly.

• Needs more RAM than thin storage server

• Benefits from SSD caches in some circumstances.

• Can't shrink "arrays" (zpools or vdevs) after the fact.

• That GPL/CDDL licensing issue

Logical Physical

physical disks

datasets
+

zvols
zpools vdevs

filesystems

eg mirror

striping

"virtual devices"

system
mount

of
dataset

metadata,
quotas,

block sizes
etc

ZFS layers

(spares)

external
filesystem

on zvol

Recent improvements
(zfs-0.7.x)

• Hot Spares are actually Hot.

• Disks marked as global hot spares will automatically
replace any "failed" disk, in any zpool.

• Metadata performance actually is.

• A host of improvements, including multithreading and
batching of updates, extended attrs in dnodes etc

• I/O performance actually is.

• Improvements to ARC ("page cache"), including in-
memory compression, improved efficiency

Experiences - ECDF

• SE / Grid Storage:

• Mostly RAID "fake-JBOD" servers (entire pool storage
migrated)

• compression on

• Hypervisors backed by ZFS for all services in VMs

• Debugging problems much faster with ZFS monitoring
tools.

Experiences - ECDF
• Negatives:

• ZFS does not like transparent_hugetables (on in RH7)

• breaks the ARC caching layer

• ZFS does not always report the I/O errors which cause it
to drop a disk (but it does drop disks correctly)

• known issue - see, e.g. https://github.com/zfsonlinux/
zfs/issues/4149

• ZFS may not also track all errors over reboots?

• Future: ZFS/Docker integration is very interesting.

https://github.com/zfsonlinux/zfs/issues/4149
https://github.com/zfsonlinux/zfs/issues/4149

Experiences - Glasgow
• Multiple classes of pool nodes:

• new HBA-backed storage

• very straightforward

• 2 x zpools containing single RAIDZ2 vdev, 2 hot spares.

• compression on (lz4)

• older RAID-controller backed (with no JBOD support)

• controller specific workarounds needed, various limits

• Some controllers can't export all their disks as RAID0, as
more disks than device ids!

DISK ZFS FS NODE POOL

DPM with ZFS Datasets

Dynamically
"resizable"
volumes
(quota'd
datasets)

DPM does not directly control pool space

/tank1/atlas

 (atlas pool = /dpm/gla.scotgrid.ac.uk/home/atlas)

/tank1/atlas/tank1/atlas /tank1/atlas

http://gla.scotgrid.ac.uk/home/atlas

Example config
tank1 used 75.8T -
tank1 available 146T -
tank1 referenced 288K -
tank1 compressratio 1.01x -
tank1 mounted yes -
tank1 quota none default
tank1 reservation none default

tank1/atlas used 75.2T -
tank1/atlas available 125T -
tank1/atlas referenced 75.2T -
tank1/atlas compressratio 1.01x -
tank1/atlas quota 200T local
tank1/atlas reservation none default

tank1/others used 680G -
tank1/others available 21.3T -
tank1/others referenced 680G -
tank1/others compressratio 1.09x -
tank1/others mounted yes -
tank1/others quota 22T local

Interesting fact = "other vo" storage slightly more compressible

Experiences - NDGF
• Some NDGF sites provided Tier 1 distributed storage on

ZFS in 2015/6

• Especially poor performance for ALICE workflows

• ALICE I/Os contain many v small (20 byte!) reads

• ZFS calculates checksums on reads - large I/O overhead
compared to read size.

• (Arguably, this is an example of a poor workflow design, as
much as a poorly chosen filesystem.)

• This is also a problem for conventional RAID systems, and
other systems (see Alastair re Object Stores v Posix etc)

^ZFS

Topics

• Storage Evolution / Small Tier-2s

• Other transitions: GFAL2 (historical), Globus (right now)

Storage Evolution
• As Andrew noted yesterday, significant mismatch between

• WLCG Experiment movement (less/no storage at many T2s)

• see, eg Chris' CMS diskless sites talk yesterday

• ATLAS a bit behind (and our testing here contingent on ATLAS
development too)

• Other VOs/Communities?

• "modern" object stores at ?every? site -> workernode local data
distribution?

• do these bids look like "reality", or "what they think looks
good"?

"Industry" Big Data
• "Big Data" in Industry

• Active Storage:

• (transient) distributed data stores (Spark RRDs etc)

• coupled to the parallel workflows performed on them

• data locality is important (and optimised for)

• Archive Storage:

• distributed, resilient object storage

• HTTP transport, capability-token security, (block
replicated+erasure coded across servers)

HDFS/CEPH/
other

distributed
block storage
"on" worker

nodes.

S3/Swift
interface to

object stores.

"Industry" Big Data
• "Big Data" in Industry

• Active Storage:

• (transient) distributed data stores (Spark RRDs etc)

• coupled to the parallel workflows performed on them

• data locality is important (and optimised for)

• Archive Storage:

• distributed, resilient object storage

• HTTP transport, capability-token security, (block
replicated+erasure coded across servers)

HDFS/CEPH/
other

distributed
block storage
"on" worker

nodes.

S3/Swift
interface to

object stores.

~ WLCG event
parallelism

see presentations
at GDB and

previous CHEPs

further from traditional
WLCG/Grid SE:

Auth* is very different
Resiliency is smarter.

Every Site is Different
• Some Tier-2 sites share resources with non-GridPP entities

• These sites can and should move with their other
stakeholders. [See, eg, Durham]

• (Shared service sites like ECDF don't have a problem, as
they're a level up in abstraction)

• WLCG VOs can and will adapt to trends in cpu + storage
provisioning.

• Some Tier-2 sites have wholly-GridPP-owned resources.

• This is the larger problem…

Some simple steps..
• Smallest sites need most critical engagement

• Most of these are majority ATLAS in the UK.

• Difficult to get things to move, because of limited time at those sites.

• (Even with CMS Diskless work, the majority of work has been at the big
sites, with no effort needed at Oxford, RHUL [or even Glasgow, etc])

• Is it possible to achieve a "zero effort" test for small sites which isn't just
"turn things off"?

• Even requiring a physical host can be too much investment.

• We would like to work with the smallest sites with ATLAS provision to test
diskless operations…

Some quick notes from the
preGBD + GDB

• Object stores covered by Alastair

• Much development in this, also driven by other "future stuff"
work (eg work with Apache Spark etc is somewhat synergistic)

• Dynafed becoming the favoured "glue"/"translator" layer.

• I'll leave tapes to the Tier 1

• Still not being beaten by disks [but there was some
discussion around the usual backups v archives thing]

• "What is the (practical) intent of Tape1 storage class?"

WLCG Workload
Management @ GDB

• GDB on Wednesday:

• recommended CE/batch pairs are:

• HTCondorCE / HTCondor

• no obvious synergy with storage migration

• ARC-CE / [SLURM or HTCondor]

• obvious synergy with ARC-cache for smaller sites
(mentioned at GDB too), which is well-tested for
ATLAS (even in UK).

A note on Globus
• Globus "central" support going away Jan 2018

• Agreed that OSG + EGI SW providers will take up necessary support in
short term.

• Long term:

• Migration from GridFTP -> HTTP(S), xrootd

• [Supported by DPM, dCache, StoRM already…]

• Opportunity here to pivot to more "standard" interface.

• Migration from GSI libs -> Oauth2 (?)

• [Needs more work? Via DynaFed?]

• Opportunity here to pivot to more sensible capability models.

Storage Accounting +
Reporting

• Storage Accounting:

• Works - needs deployment more widely.

• UK has one of the highest buy-ins of any region ✔

• Storage Reporting (SRM replacement):

• final draft spec circulated [see preGDB summary]

• Gets lighter with each iteration…

Finis
• Discussion:

• Where do experiments need to be for us to test small
site things?

• What's the minimum we can require a small site to do?

• Nothing?

• Provide a VM?

• Provide a physical host?

Backup Slides

Aside: EC > replication
Imagine N sites.

You replicate data at 2 of them

If one site fails, you always have at least one copy

If two sites fail, then you have probability
2/(N(N-1)) of having no copies

At a cost of twice the storage for 1 copy,
you gain perfect resilience for 1 failure.

Lose 2/(N(N-1)) of data on 2 fails.
Twice the single copy read throughput.

You stripe data + 2 parity across them all

If one site fails, you can always reconstruct

If two sites fail… you can always reconstruct

At a cost of 1+2/(N-2) times the storage
 for 1 copy, you gain perfect resilience for

2 failures.
N times the single copy read throughput.

