
MoEDAL and GridPP

Jonathan Hays

MoEDAL and Monopoles

MoEDAL = The <u>M</u>onopole & <u>E</u>xotics <u>D</u>etector at the <u>L</u>HC

Search for highly ionizing particles such as magnetic monopoles and other exotic <u>avatars</u> of new physics

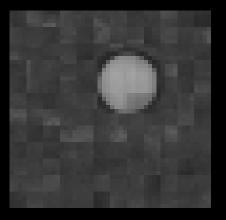
<u>Nuclear track detectors</u> and aluminium trapping detectors

14/09/2017

Jonathan Hays, j.hays@qmul.ac.uk

MoEDAL and Grid

Current usage is very modest and negligible compared to the big LHC experiments Monte-Carlo generation Limit calculations


Future plans

Continue to run MC and limit calculations Expanding machine learning activity – new subgroup formed for ML to investigate Use GPUs for training

Challenge from user perspective = memory usage

Machine Learning to find Holes

Task is to spot holes of a few microns in size in $20m^2$ of etched plastic

Something ML should be able to do well

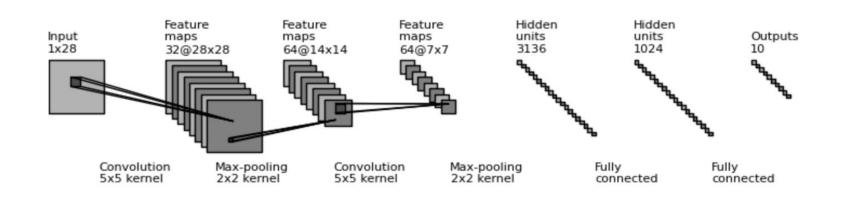

Training data constructed by resampling images from beam tests

(Will also need overlay of noisy images from LHC environment)

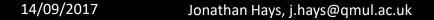
Convolutional Neural Networks

Deep artificial neural network inspired by biological function – has been successfully applied to image processing and categorization tasks

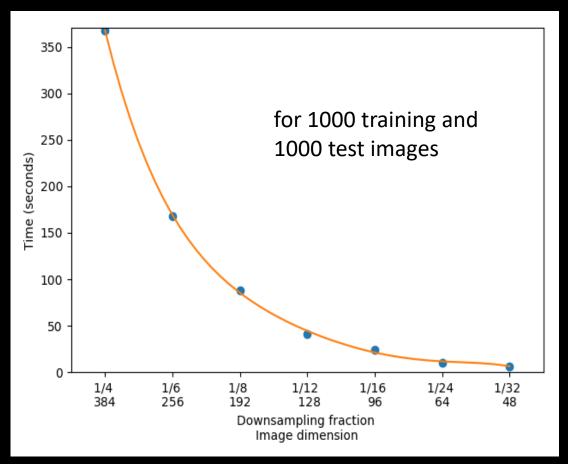
Challenges in this context:


image preparation and resources – how to deal with very large images optimizing network structure supervised learning technique needs (lots of) training data

14/09/2017 Jonathan Hays, j.hays@qmul.ac.uk


Convolutional Neural Networks

Deep artificial neural network inspired by biological function – has been successfully applied to image processing and categorization tasks


Applying CNNs very fast – training is slow. GPUs can really make a difference

K40, K80, 1080Ti used at QMUL (though not via grid for our studies so far) using TensorFlow

Performance: Timing

Note: 1080 Ti much faster for these jobs than K40 (and much cheaper)

14/09/2017

Jonathan Hays, j.hays@qmul.ac.uk

GPU workflows

Training data preparation workflow

- Initial training image uploaded to grid storage
- Image generation via resampling etc via CPU queues
- Save results to grid storage

Training workflow:

Training data uploaded to grid storage Software distributed via CVMFS Training job submitted to GPU queue Trained ML configuration to grid storage Retrieve configuration from storage

Analysis workflow:

Large images uploaded to grid storage Software distributed via CVMFS Analysis job with ML config submitted to CPU/GPU queue Results back to grid storage

Summary

MoEDAL makes opportunistic use of grid for MC and limit calcluations

Future activities involve analyzing large images $(20 m^2)$ at a resolution of a few microns Training will require GPUs

(Also using this to learn/develop techniques that could be used on ATLAS)

