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•  Experimental	status	of	RD(*)		

•  Effec>ve	Lagrangian	approach	in	RD(*)	

•  Models	of	NP		in	RD(*)	

•  Interpreta>on:	Sign	of	LFU	viola>on?	

•  	Any	signature	at		higher	energies		at	LHC?	



RD(⇤) =
BR(B ! D(⇤)⌧⌫⌧ )

BR(B ! D(⇤)µ⌫µ)

B ! K⇤µ+µ�2)		P5’	in		

1)	 3.9σ	

(angular	distribu>on	func>ons)	3σ	

charged		current	SM	tree	level	

FCNC	-	SM	loop	process		

B	physics	anomalies:	experimental	results	≠	SM	predic>ons!	

				3)																																																																					in	the	dilepton	invariant	mass	bin		

Vector leptoquark resolution of RK and RD(⇤) puzzles
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We propose that both anomalies in B meson decays, RD(⇤) and RK might be explained by only
one vector leptoquark weak triplet state. The constraints on the parameter space are obtained by
considering t ! b⌧⌫⌧ data, lepton flavor universality tests in the kaon sector, bounds on the lepton
flavor violating decay B ! Kµ⌧ , and b ! cµ⌫µ decays. The presence of such vector leptoquark
could be exposed in precise measurements of top semitauonic decays to b quark. The model predicts
that LFU ratio RK⇤ in B ! K⇤`+`� decays is larger than RK .

I. INTRODUCTION

Although LHC has not found yet any particles not present in the Standard Model (SM), low-energy precision
experiments in B physics pointed out a few puzzling results. Namely, we are witnessing persistent indications of
disagreement with the SM prediction of lepton flavor universality (LFU) ratio in the ⌧/µ and ⌧/e sector. In the case

of ratio RD(⇤) = �(B!D(⇤)⌧⌫)
�(B!D(⇤)`⌫)

[1–6], the deviation from the SM is at 3.5� level [7] and has attracted a lot of attention

recently [8, 9]. Since the denominator of these ratios are the well measured decay rates with light leptons in the final
states, ` = e, µ, the most obvious interpretation of RD(⇤) results are in terms of new physics a↵ecting semileptonic
b ! c⌧⌫ processes [10].

The second group of observables, testing rare neutral current processes with flavor structure (s̄b)(µ+µ�) also indicate
anomalous behaviour [11–21]. Decay B ! K⇤µ+µ� deviates from the SM in the by-now-famous P 0

5

angular observable
at the confidence level of above 3� [22]. If interpreted in terms of new physics, all analyses point to modifications of
the leptonic vector current, which is also subject to large uncertainties due to nonlocal QCD e↵ects. However, several
studies have shown that even with generous errors assigned to QCD systematic e↵ects, the anomaly is not washed
away [23]. Furthermore, the sizable violation of LFU in the ratio RK = �(B!Kµµ)

�(B!Kee) in the dilepton invariant mass

bin 1 GeV2  q2  6 GeV2, has been established at 2.6�. This ratio is largely free of theoretical uncertainties and
experimental systematics, deviates in the muon channel consistently with the deviation in B ! Kµ+µ�. Strikingly
enough all these disagreements were observed in the B meson decays to the leptons of the second and third generation.
As pointed out in [10] lepton flavour universality has been tested at percent level and are in the case of pion and kaon
in excellent agreement with the SM predictions. It has been already suggested that scalar leptoquark might account
for this anomalous behaviour in many works [7, 12, 14, 24–27].

Many models of New Physics (NP) [1–6, 8, 9, 11–21, 27] have been employed to explain either RK and P 0
5

anomalies
or RD(⇤) . Reference [15] suggested that RK and P 0

5

can be explained if NP couples only to the third generations of
quarks and leptons. Similarly, the authors of [9] suggested that both RD(⇤) and RK anomalies can be correlated if the
e↵ective four-fermion semileptonic operators consist of left-handed doublets. The model of [28] proposed existence
of an additional weak bosonic triplet and falls in the category of weak doublet fermions coupling to the weak triplet
bosons, which then can explain all three B meson anomalies. Among the NP proposals a number of them suggest

that one scalar leptoquark accounts for either R(⇤)
D or RK anomalies. Howerer, in the recent paper [7] both deviations

were addressed by a single scalar leptoquark with quantum numbers (3, 1,�1/3) in such a way that RD(⇤) anomalies
is explained at the tree level, while RK only at loop level. This leptoquark scalar, unfortunately can couple to diquark
state too and therefore it potentially leads to proton decay. One may impose that this dangerous coupling vanishes,
but such a scenario is not easily realised within any GUT approach.

In this paper, we extend the SM by a vector SU(2) triplet leptoquark, which accomplishes both of the above
requirements by generating purely left handed currents with quarks and leptons. Furthermore, the triplet nature
of the state connects the above mentioned anomalies with the rare decay modes of B mesons to a final states with

⇤
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2.4σ																													

13	Sept.	2017	
LHCb	result	~2	σ	

BR(Bc ! J/ ⌧⌫⌧ )

BR(Bc ! J/ µ⌫µ)
= 0.71± 0.17± 0.18



Motivation HFAG average today
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Charged	current	in		b					c	τυτ	“	RD(*)	puzzle”	



RD(⇤) =
BR(B ! D(⇤)⌧⌫⌧ )

BR(B ! D(⇤)µ⌫µ)
3.9σ	

charged		current	(SM	tree	level)	

B	physics	anomalies:	experimental	results	≠	SM	predic>ons!	

Motivation

So far no clear signal of NP has been found at the LHC
) unique opportunity for indirect searches (e.g. flavor physics).

A few cracks [⇡ 2� 3�] appeared recently in B meson decays
) Violation of Lepton Flavor Universality (LFU)?

RD(⇤) =
B(B ! D (⇤)⌧ ⌫̄)

B(B ! D (⇤)`⌫̄)

�����
`2{e,µ}

, RK =
B(B+ ! K+µµ)

B(B+ ! K+ee)

�����
q22(1,6)GeV

2
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SM	

present	scenario	
HFAG	quotes	3.9σ	deviaLon		
from	SM	

R(D(*))



Momentum transfer distributions, A. Cellis et al,1612.07757   

6

FIG. 4. Left-panel: Measured di↵erential distributions in B ! D⌧⌫ by BaBar and Belle as a function of the lepton invariant
mass squared q2. The 1� ranges obtained from the model-independent fit of R(D) and the q2 distribution are shown as solid-red
bands. The result of a SM fit (excluding R(D(⇤))) is shown as solid-grey bands. The prediction for regions of the NP parameter
space allowed by R(D(⇤)), but excluded by the shape information are shown as solid-green bands. Note that the BaBar data-
points have been re-scaled by the relative normalization factor obtained in the fit to have the same scale as the one from Belle.
Right-panel: The q2-binned SM prediction for R(D) and result from the fit including the scalar contribution.

FIG. 5. The caption is the same as in Fig. 4 but for B ! D⇤⌧⌫.

distributions, although the minimal �2 of the combina-
tion is similar to the one with gcb⌧L , only indicating less
tension between di↵erential distributions and R(D(⇤)).

Adding both contributions simultaneously, as we did
above, yields a better result than in both of these two
sub-scenarios. Note that this option has been ignored in
Ref. [14], leading to the incorrect statement that scalar
contributions alone could not explain R(D(⇤)) together
with the measured di↵erential distributions.

Finally, it is worth mentioning that none of the scenar-
ios with NFC improves the description of R(D(⇤)) over
the SM case: the only scenario that could a↵ect these
observables sizably is the Type-II 2HDM, but the con-
straints from R(D) and R(D⇤) contradict each other in

this case.3

2. b ! u⌧⌫

The semitauonic b ! u transitions are less explored
experimentally, given their additional suppression by
|Vub/Vcb|2 ⇠ 1%. We find a mild tension for the ex-
perimental value of R(⌧) with respect to the SM pre-
diction, of about 1.8�, see Table I. The measurement
of B ! ⇡⌧⌫ is not significant yet, and well compatible

3 For this statement to hold strictly the e↵ect on the di↵erential
distributions has to be taken into account; however, the BaBar
analysis [4, 25] indicates that it holds even then.
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𝑑Γ
𝑑 cos 𝜃hel

= 1
2
(1 + 𝜶 ∙ 𝓟𝝉 𝐜𝐨𝐬𝜽𝐡𝐞𝐥)

• Tau helicity angle (cos 𝜃hel) is sensitive to 𝓟𝝉.
– 4-momentum of 𝐵sig is determined by had-tag.
– Two-body hadronic 𝜏 decays are used.

• 𝜏 → ℎ𝜈, ℎ = 𝜋−, 𝜌− (→ 𝜋−𝜋0)

• 𝛼 =  
1 for 𝜏 → 𝜋−𝜈 (pseudo scalar meson)

0.45 for 𝜏 → 𝜌−𝜈 vector meson

• Both 𝐵0/𝐵+ channels are used.
– 𝐷∗+ → 𝐷0𝜋+/𝐷+𝜋0, 𝐷∗0 → 𝐷0𝜋0/𝐷0𝛾

• 𝑀miss
2 is used for determination of 𝐵 → 𝐷∗ℓ𝜈 (denominator in 𝓡(𝑫∗) )

• Correct 𝒫𝜏raw to 𝒫𝜏true in fitter, considering acceptance effect.
– cos 𝜃hel < 0.8 for (𝜏 → 𝜋−𝜈)

𝓡(𝑫∗) and 𝓟𝝉 with Hadronic Tag 8
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	τ	polariza>on			
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Belle:	1608.06931	

I. INTRODUCTION

Semitauonic B meson decays with b ! c⌧

�
⌫̄⌧ [1] transitions are sensitive to new physics

(NP) beyond the standard model (SM) involving non-universal coupling to heavy fermions.

One prominent candidate for NP is the Two Higgs Doublet Model (2HDM) [2], which has

an additional Higgs doublet and therefore introduces two neutral and two charged Higgs

bosons in addition to the SM Higgs boson. The charged Higgs bosons may contribute to

the b ! c⌧

�
⌫̄⌧ process, modifying its branching fraction and decay kinematics.

Exclusive semitauonic decays of the type B̄ ! D

(⇤)
⌧

�
⌫̄⌧ have been studied by Belle [3–

6], BaBar [7, 8] and LHCb [9]. The experiments typically measure the ratios of branching

fractions,

R(D(⇤)) ⌘ B(B̄ ! D

(⇤)
⌧

�
⌫̄⌧ )

B(B̄ ! D

(⇤)
`

�
⌫̄`)

(1)

where the denominator is the average for `

� 2 {e�, µ�}. The ratio cancels uncertainties

common to the numerator and the denominator. These include the Cabibbo-Kobayashi-

Maskawa matrix element |Vcb| and many of the theoretical uncertainties on hadronic form

factors and experimental reconstruction e↵ects. The current averages of the three experi-

ments [5, 6, 8, 9] are R(D) = 0.397 ± 0.040 ± 0.028 and R(D⇤) = 0.316 ± 0.016 ± 0.010,

which are within 1.9� and 3.3� [10] of the SM predictions of R(D) = 0.299 ± 0.011 [11]

or 0.300 ± 0.008 [12] and R(D⇤) = 0.252 ± 0.003 [13], respectively. Here, � represents the

standard deviation.

In addition to R(D(⇤)), the polarization of the ⌧ lepton and the D⇤ meson is also sensitive

to NP [14, 15]. The polarization of the ⌧ lepton (P⌧ ) is defined by

P⌧ =
�+ � ��

�+ + �� , (2)

where �± denotes the decay rate of B̄ ! D

(⇤)
⌧

�
⌫̄⌧ with a ⌧ helicity of ±1/2. The SM

predicts P⌧ = 0.325 ± 0.009 for B̄ ! D⌧

�
⌫̄⌧ [14] and P⌧ = �0.497 ± 0.013 for B̄ !

D

⇤
⌧

�
⌫̄⌧ [15, 16]. The ⌧ polarization is accessible in two-body hadronic ⌧ decays with the

following formulae [17]:

1

�

d�

d cos ✓
hel

=
1

2
(1 + ↵P⌧ cos ✓hel), (3)

↵ =

8
><

>:

1 for pseudo-scalar mesons

m2
⌧�2m2

V

m2
⌧+2m2

V
for vector mesons,

(4)
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FIG. 4. Fit result to the signal sample projected onto the cos ✓
hel

axis.

⇡

0, K± and ⇡

±, and is therefore correlated with the e�ciency uncertainty of the ⌧ -daughter

particles containing ⇡

± and ⇡

0. This correlation is taken into account in the total systematic

uncertainties shown in Table II.

VII. RESULT

Figure 3 shows the fits to the signal and the normalization samples. (The figures in the

forward and backward regions are shown in the Appendix .) The cos ✓
hel

distribution is

shown in Fig. 4. The observed signal and normalization yields are summarized in Table III.

The p-values are found to be 15% for the normalization fit and 29% for the signal fit. From

the fit, we obtain

R(D⇤) = 0.276± 0.034(stat.)+0.029
�0.026(syst.), (12)

P⌧ = �0.44± 0.47(stat.)+0.20
�0.17(syst.). (13)

The signal significance is 9.7� (statistical error only) or 7.1� (including the systematic

uncertainty). The significance is taken from
p
2 ln(L

max

/L

0

), where L

max

and L

0

are the

likelihood with the nominal fit and the null hypothesis, respectively.

25

⌧� ! ⇡�⌫ , ⇢�⌫

Belle (2016)

Standard Model predictions Current experimental data

Becirevic ́, Tayduganov, Fajfer, Nisandzic, Alonso, Camalich, Westhoff, Datta, Duraisamy, Ghosh  

With Belle II in mind, considerable recent progress on the description 
of the full angular distributions in the presence of generic NP



BR(Bc ! J/ ⌧⌫⌧ )

BR(Bc ! J/ µ⌫µ)
= 0.71± 0.17± 0.18

LHCb	on	13	September	2017:	First	test	of	
lepton	universality	using	charmed-beauty	
meson	decays.	



•  	B							D	τντ	:	scalar	form	factor	contributes!		
		
•  	massless	lepton:	only	vector	form	factor	

contributes.	

necessary	to	know	F0(q2)!	

Exclusive	semileptonic	B							D	lνl	decays	

• 			mostly	HQ	approach	useful;	

• 		perturba>ve	correc>ons	+	HQE			
				(Nierste	et	al,	0801.4938,		Tanaka	&		
					Watanabe,	1006.4306);	
	
• 	complete	informa>on	comes	from	–	laGce		QCD;	

• 	in	ra>o	uncertain>es		
• cancel:	

Mescia&	Kamenik,	0802.3790	
Tanaka	&	Watanabe,1006.430	
Faller,	Mannel	&Tyrczyk	
1105.36796	
Nierste,	Trine	&	Westhoff,	
0801.4938	



																								B ! D⇤⇥�⌧

S.F.	,	J.F.Kamenik,	Nišandžić,	1203.2654	
S.F.	J.F.	Kamenik,	I.	Nišandžić,	J.	Zupan,	1206.1872	
Körner&	Schuller,	ZPC	38	(1988)	511,	
Kosnik,	Becirevic,	Tayduganov,	1206.4977	
D.	Becirevic,	S.F.	I.	Nisandzic,	A.	Tayduganov,		
1602.03030,	Fretsis	et	al,	1506.08896,	….	

S.	Faller	et	al.,	1105.3679,	
Sakai&Tanaka,	1205.4908.	
Biancofiore	,	Collangelo,		
DeFazio	1302.1042,	
R.Alonso	et	al,	1602.0767,Bardhan	
et	al.,	1610.03038….	
	



Caprini	et	al.,	hep-ph/9712417	
	
Gambino	et	a.l,	1206.2296		

Bigi,	Gambino,	Schacht	1707.09509	
RD*=0.260(8)	

Recent	progres:	talks	of	Gambino	
and	Wingate,	LmC	2017!	
		



How	to	approach	to	anomalies?	

•  First	step	at	low	energies:	to	construct	effec>ve	Lagrangian	which		
might		explain	experimental	data;	

•  Is	the	anomaly	SM	or	NP?	

•  Find	new	par>cle	which	can	mimic	effec>ve	Lagrangian;	
Check	all	other	low	energy	flavour		constraints,	check	electroweak	observables,	
include	LHC	direct	searches	for	NP;		

•  Make	consistent	model	of	NP!	



Effec>ve	Lagrangian	approach			for																						decay										

Heff =
4GFp

2
Vcbc̄ �µPL b , ⌫̄ �µPL ⌧ +

1

⇤
⌃iciOi

If	NP	scale	is	above	electroweak	scale,	NP	effec>ve	operators	have	to	respect		
SU(3)	x	SU(2)L	x	U(1)Y	

⌫Rno										

Freytsis,	Lige>,	Ruderman	1506.08896	
S.F.	J.F.	Kamenik,	I.	Nišandžić,	J.	Zupan,		
1206.1872	
	

b ! c⌧⌫⌧

Outline(

•  Motivation; 

•  Exclusive decay modes                      and                        

•  Hadronic matrix elements (symmetries); 

•  Form factors and  heavy-quark symmetry (Isgur-Wise 
function) 

• Helicity amplitudes; 

• Branching ratios in SM. 

B̄ ! Dl⌫l B̄ ! D⇤l⌫l

>	



3

Operator Fierz identity Allowed Current �Lint

OVL (c̄�µPLb) (⌧̄ �
µPL⌫) (1,3)0 (gq q̄L⌧�

µqL + g` ¯̀L⌧�
µ`L)W

0
µ

OVR (c̄�µPRb) (⌧̄ �
µPL⌫)

OSR (c̄PRb) (⌧̄PL⌫)

OSL (c̄PLb) (⌧̄PL⌫)

�
(1,2)1/2 (�dq̄LdR�+ �uq̄LuRi⌧2�

† + �`
¯̀
LeR�)

OT (c̄�µ⌫PLb) (⌧̄�µ⌫PL⌫)

O0
VL

(⌧̄ �µPLb) (c̄�
µPL⌫)  ! OVL

⌧
(3,3)2/3 � q̄L⌧�µ`LU

µ

O0
VR

(⌧̄ �µPRb) (c̄�
µPL⌫)  ! �2OSR

�
(3,1)2/3 (� q̄L�µ`L + �̃ d̄R�µeR)U

µ

O0
SR

(⌧̄PRb) (c̄PL⌫)  ! � 1
2OVR

O0
SL

(⌧̄PLb) (c̄PL⌫)  ! � 1
2OSL � 1

8OT (3,2)7/6 (� ūR`L + �̃ q̄Li⌧2eR)R

O0
T (⌧̄�µ⌫PLb) (c̄�µ⌫PL⌫)  ! �6OSL + 1

2OT

O00
VL

(⌧̄ �µPLc
c) (b̄c�µPL⌫)  ! �OVR

O00
VR

(⌧̄ �µPRc
c) (b̄c�µPL⌫)  ! �2OSR (3̄,2)5/3 (� d̄cR�µ`L + �̃ q̄cL�µeR)V

µ

O00
SR

(⌧̄PRc
c) (b̄cPL⌫)  ! 1

2OVL

⌧
(3̄,3)1/3 � q̄cLi⌧2⌧ `LS

O00
SL

(⌧̄PLc
c) (b̄cPL⌫)  ! � 1

2OSL + 1
8OT

�
(3̄,1)1/3 (� q̄cLi⌧2`L + �̃ ūc

ReR)S

O00
T (⌧̄�µ⌫PLc

c) (b̄c�µ⌫PL⌫)  ! �6OSL � 1
2OT

TABLE II. All possible four-fermion operators that can contribute to B̄ ! D(⇤)⌧ ⌫̄. Operators for which no quantum numbers
are given can only arise from dimension-8 operators in a gauge invariant completion. For other operators the interaction terms
which are subsequently integrated out are given. For the T operators we use the conventional definition of �µ⌫ = i[�µ, �⌫ ]/2.

single operator, while others can generate two simulta-
neously. Anticipating the large Wilson coe�cients neces-
sary to fit the observed R(D(⇤)) ratios, we focus on oper-
ators which can arise from dimension-6 gauge-invariant
terms. Operators which can only come from SM gauge
invariant dimension-8 terms or cannot be generated by
integrating out a low-spin mediator will be omitted. Such
contributions would be suppressed by additional powers
of v/⇤, or could only arise from strongly coupled NP.

We calculate the contributions of all operators in the
heavy quark limit [35]. Subleading corrections Our
method follows that of Ref. [36], and we rederived and
confirmed those results. (A missing factor of (1�m

2
`/q

2)
has to be inserted in Eq. (10) of Ref. [36].) We use the
most precise single measurement of the hA1 form fac-
tor [8], which equals the Isgur–Wise function in the heavy
quark limit.

Higher order corrections are neglected, except for
the following two e↵ects that are known to be signifi-
cant. For scalar operators a numerically sizable term,
(mB+mD⇤)/(mb+mc) ' 1.4, arises from hD⇤|c̄�5b|Bi =
�q

µhD⇤|c̄�µ�5b|Bi/(mb + mc). We also include the
leading-log scale dependence of scalar (here CS is either
CSL or CSR) and tensor currents [37] in fits to models
where they appear simultaneously,

CS(mb) =

✓
↵s(mt)

↵s(mb)

◆�12/23 ✓
↵s(M)

↵s(mt)

◆�12/21

CS(M) ,

CT (mb) =

✓
↵s(mt)

↵s(mb)

◆4/23 ✓
↵s(M)

↵s(mt)

◆4/21

CT (M) . (9)

For numerical calculations we use a reference scale M =
750 GeV. The sensitivity to this choice is small, as most
of the running occurs at low scales, between mb and mt.

To test the robustness of our results to O(⇤QCD/mc,b)
corrections, we varied the slope parameter of the Isgur–
Wise function, ⇢2, by ±0.2 (motivated by Ref. [38]), and
found less than 1� change in the results. We leave consid-
eration of O(⇤QCD/mc,b) corrections for the new physics,
of the sort carried out for 2HDMs in [39, 40], for future
work.

Figure 1 shows the results of �2 fits to R(D) and R(D⇤)
for each of the four-fermion operators in Table II individ-
ually. Here and below, our �2 includes experimental and
SM theory uncertainties, but does not include theory un-
certainties on NP, which are subdominant. Throughout,
we assume that no new large sources of CP violation
are present, i.e., we assume that the the phases of the
NP operators are aligned with the phase of the SM vec-
tor operator. A contribution from the OT operator or a
modification of the SM contribution proportional to OVL

(or any of its equivalents under Fierz identities) provide
good fits to the data. The OSL operator can also fit
the total rates, but it leads to q

2 spectra incompatible
with observations. The operator O00

SL
also gives a good

fit, which is not apparent from only considering the un-
primed operators. (Note that the measurements of R(D)
and R(D⇤) depend on the operator coe�cients, because
the decay distributions are modified by the new physics
contribution, a↵ecting the experimental e�ciencies and
the measured rates [1, 41]. This e↵ect cannot be included
in our fits, providing another reason to take the �2 values

From	Freytsis,	Lige>,and	Ruderman,	arXiv:1506.08896		
Comment:	neutrino	SM-like!	



1 Introduction

One of the most intriguing results obtained so far at the Large Hadron Collider (LHC) is
the indication of the lepton flavor universality violation (LFUV). First, from the measured
partial branching fractions of B ! K`

+

`

�, in the window of q2 2 [1, 6] GeV2, the LHCb
Collaboration in Ref. [1] reported

RK =
B(B ! Kµµ)q22[1,6]GeV

2

B(B ! Kee)q22[1,6]GeV

2
= 0.745±0.090

0.074 ±0.036 , (1)

which appears to be 2.4� below the Standard Model (SM) prediction, RSM

K = 1.00(1) [2].
Not many New Physics (NP) models can explain R

exp

K < R

SM

K , yet many attempts have
been reported in the literature [3]. In terms of a generic low energy e↵ective field theory it
was soon realized that the models in which the NP contributions modify the couplings to
muons, rather than to electrons, are more plausible. Furthermore it was understood that
a modification of the couplings (Wilson coe�cients) of muons to the scalar and/or pseu-
doscalar operator cannot generate the observed suppression, whereas a shift in couplings to
the vector and/or axial operator can. Among those latter scenarios the popular are those
that give rise to C

9

= �C

10

, or C 0
9

= �C

0
10

, patterns that are explicitly verified in several
models, including those with an extra Z

0 boson as well as the models which postulate the
existence of low energy leptoquark states.

The hint that the loop induced decays b ! s`` can break lepton flavor universality (1)
was corroborated by the most recent LHCb results [4],

R

low

K⇤ =
B(B ! Kµµ)q22[0.045,1.1]GeV

2

B(B ! Kee)q22[0.045,1.1]GeV

2
= 0.660±0.110

0.070 ±0.024 ,

R

central

K⇤ =
B(B ! Kµµ)q22[1.1,6]GeV

2

B(B ! Kee)q22[1.1,6]GeV

2
= 0.685±0.113

0.069 ±0.047 , (2)

thus again ⇠ 2.2 � 2.4� below the Standard Model (SM) prediction [2]. If confirmed,
that result would exclude the model of Ref. [5], for example, in which the explanation
of Rexp

K < R

SM

K was made by means of a scalar leptoquark with hypercharge Y = 1/6.
That latter model verifies the pattern (Cµµ

9

)0 = � (Cµµ
10

)0, which entails RK < R

SM

K entails
RK⇤

> R

SM

K⇤ .
In this paper we will argue that another model with a low energy scalar leptoquark state

can be explain both R

exp

K < R

SM

K and R

exp

K⇤ < R

SM

K⇤ . In that (R
2

) model the leptoquark state
transforms as (3, 2, 7/6) under the Standard Model gauge group SU(3)⇥SU(2)⇥U(1)Y . A
peculiarity of the model is that the coupling of leptoquark to s and µ is absent and therefore
the shift in C

µµ
9

can be only achieved through loops. The model verifies Cµµ
9

= �C

µµ
10

, so
that both RK and RK⇤ can be smaller than in the Standard Model.

The idea of explaining RK < R

SM

K as a loop e↵ect in a model with a scalar leptoquark
is not new. In Ref. [6] the authors organized the Yukawa couplings in a similar way but
in a model in which the scalar leptoquark is a weak singlet with hypercharge Y = 1/3. It
appeared that the dominant contribution, arising from the top-quark propagating in the
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2.4σ	

2.2	σ	-	2.4σ	

Do	not	forget:	FCNC	-	SM	loop	process		

B ! K⇤µ+µ�				P5’	in		 (angular	distribu>on	func>ons)	3σ	



RK	and	RK*	and	New	Physics		

Cµ
9 = �Cµ

10 = �0.64

[�0.81,�0.48]

Similar	values	obtained	by	Capdevila		et	al.,	1704.05340	

Altmannshofer,	Stangl,	Straub		
1704.05435	

In	agreement	with	
fit	from	RK	

Hiller,	Schmaltz,	1408.1627,	1411.4773	

LHCP (Lund), June 16 ‘166

Effective operator analysis

• Global b→sμμ data prefer: decrease muonic decay rate B → Kμμ,   
possible alternative: increase electronic rate B → Kee 

•  Scalar operators CS=-CP, CS’=CP’ for muons: large sensitivity in 
Br(Bs→ μμ) ✗ 

•  Scalar operators CS=-CP, CS’=CP’ for electrons can decrease RK: in 
conflict with rate of B → Kee ✗ 

• (Axial)vector operators or LEFT chiral vector currents: can affect μ or 
e ✓

O(0)
7 =

e

(4⇡)2
mb(s̄�µ⌫PR(L)b)F

µ⌫

O(0)
9 =

e2

(4⇡)2
(s̄�µPL(R)b)(¯̀�

µ`) O(0)
10 =

e2

(4⇡)2
(s̄�µPL(R)b)(¯̀�

µ�5`)

O(0)
S =

e2

(4⇡)2
(s̄PR(L)b)(¯̀̀ ) O(0)

P =
e2

(4⇡)2
(s̄PR(L)b)(¯̀�5`)

[Hiller, Schmaltz, 1408.1627] 
[Hiller, Schmaltz, 1411.4773]

Destructive interference with SM in 
B → Kμμ and  Bs→ μμCµ

9 = �Cµ
10 ⇠ �[0.5, 1]

(relative to the SM values)



Ø  Can	flavor	physics	resolves		puzzles	relying	on	the	exis>ng	SM	tools?	
	

Ø QCD	impact:	knowledge	of	form-factors!	

How	well	do	we	know	all	new/old		form-factors?	LaGce	improvements?	

	

Ø  Are	SM	calcula>ons	of	the	exis>ng	observables	precise	enough?		

Ø  B	physics	puzzles	indicate	lepton	flavor	universality	viola0on	in		
semileptonic	decays:	τ/μ		and	μ/e(?)!	
	

π	and	K	physics:		tests	of	LFU	conserva>on	holds	up	to	1	percent	level		for	all	three		
lepton	genera>ons.			Experiment	and	SM	expecta>ons	–	excellent	agreement!	
	

Do	these	devia>ons	suggest	Lepton	Flavour	Universality	viola>on?	



Feruglio,	Paradisi,	Pa�ori,	1606.00524;	Ba�acharaya	et	al.,	1412.7164;	
Glashow,	Guadagnoli	and	Lane,	1411.0565	NP		couples		preferen>ally		to	third	
genera>on.	
For	NP	scale	above	electroweak	scale,	SU(3)	x	SU(2)L	x	U(1)Y	at	low	energies	should	
be	respected!	

Effec>ve	Lagrangian	approach:	NP	in	third	genera>on	

Revisiting Lepton Flavour Universality in B Decays

Ferruccio Feruglio,1, 2 Paride Paradisi,1, 2 and Andrea Pattori1, 3

1Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, Italy
2Istituto Nazionale Fisica Nucleare, Sezione di Padova, I–35131 Padova, Italy

3Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland

Lepton flavour universality (LFU) in B-decays is revisited by considering a class of semileptonic
operators defined at a scale ⇤ above the electroweak scale v. The importance of quantum e↵ects,
so far neglected in the literature, is emphasised. We construct the low-energy e↵ective Lagrangian
taking into account the running e↵ects from ⇤ down to v through the one-loop renormalization
group equations (RGE) in the limit of exact electroweak symmetry and QED RGEs from v down to
the 1GeV scale. The most important quantum e↵ects turn out to be the modification of the leptonic
couplings of the vector boson Z and the generation of a purely leptonic e↵ective Lagrangian. Large
LFU breaking e↵ects in Z and ⌧ decays and visible lepton flavour violating (LFV) e↵ects in the
processes ⌧ ! µ``, ⌧ ! µ⇢, ⌧ ! µ⇡ and ⌧ ! µ⌘(0) are induced.

Introduction Lepton flavour universality (LFU) tests
are among the most powerful probes of the Standard
Model (SM) and, in turn, of New Physics (NP) e↵ects.
In recent years, experimental data in B physics hinted at
deviations from the SM expectations, both in charged-
current as well as neutral-current transitions. The sta-
tistically most significant data are:

• An overall 3.9� violation from the ⌧/` universality
(` = µ, e) in the charged-current b ! c decays [1–4]:

R⌧/`
D(⇤) =

B(B̄ ! D(⇤)⌧ ⌫̄)
exp

/B(B̄ ! D(⇤)⌧ ⌫̄)SM
B(B̄ ! D(⇤)`⌫̄)

exp

/B(B̄ ! D(⇤)`⌫̄)SM
, (1)

R⌧/`
D = 1.37± 0.17, R⌧/`

D⇤ = 1.28± 0.08 . (2)

• A 2.6� deviation from µ/e universality in the
neutral-current b ! s transition [5]:

Rµ/e
K =

B(B ! Kµ+µ�)
exp

B(B ! Ke+e�)
exp

= 0.745+0.090
�0.074 ± 0.036 , (3)

while (Rµ/e
K )SM = 1 up to few % corrections [6].

As argued in [7–10] by means of global-fit analyses,

the explanation of the Rµ/e
K anomaly favours an e↵ec-

tive 4-fermion operator involving left-handed currents,
(s̄L�µbL)(µ̄L�µµL). This naturally suggests to account
also for the charged-current anomaly through a left-
handed operator (c̄L�µbL)(⌧̄L�µ⌫L) which is related to
(s̄L�µbL)(µ̄L�µµL) by the SU(2)L gauge symmetry [13].
Clearly, this picture might work only provided NP cou-
ples much more strongly to the third generation than to
the first two. Such a requirement can be naturally ac-
complished in two ways: i) assuming that NP is coupled,
in the interaction basis, only to the third generation of
quarks and leptons – couplings to lighter generations are
then generated by the misalignment between the mass
and the interaction bases through small flavour mixing
angles [14] – and ii) if NP couples to di↵erent fermion
generations proportionally to their mass squared [15]. In

the scenario i) LFU violation necessarily implies lepton
flavour violating (LFV) phenomena. The same is not true
in scenario ii) if the lepton family numbers are preserved.

In this work, we revisit the LFU in B-decays focusing
on a class of semileptonic operators defined above the
electroweak scale v and invariant under the full SM
gauge group, along the lines of Refs. [11–17]. The main
new development of our study is the construction of the
low-energy e↵ective Lagrangian taking into account the
running of the Wilson coe�cients of a suitable operator
basis and the matching conditions when mass thresholds
are crossed. The running e↵ects from the NP scale ⇤
down to the electroweak scale are included through the
one-loop renormalization group equations (RGE) in the
limit of exact electroweak symmetry [18]. From the
electroweak scale down to the 1GeV scale we use the
QED RGEs. By explicit calculations, we have checked
that the scale dependence of the RGE contributions
from gauge and top yukawa interactions cancels with
that of the matrix elements in the relevant physical
amplitudes. Such a program has not been carried out in
the literature so far and it has significant implications
on the conclusions of Refs. [11–17]. The most important
quantum e↵ects turn out to be the modification of
the leptonic couplings of the vector boson Z and the
generation of a purely leptonic e↵ective Lagrangian. As
a result, large LFV and LFU breaking e↵ects in Z and
⌧ decays are induced.

E↵ective Lagrangians If the NP contributions origi-
nate at a scale ⇤ � v, in the energy window above v and
below ⇤ the NP e↵ects can be described by an e↵ective
Lagrangian L=L

SM

+L
NP

invariant under the SM gauge
group. Here we assume that NP is dominated by

L
NP

=
C

1

⇤2

(q̄
3L�

µq
3L)

�
¯̀
3L�µ`3L

�
+

C
3

⇤2

(q̄
3L�

µ⌧aq
3L)

�
¯̀
3L�µ⌧

a`
3L

�
. (4)

We move from the interaction to the mass basis through
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the unitary transformations

uL ! VuuL dL ! VddL V †
uVd = V , (5)

⌫L ! Ue⌫L eL ! UeeL , (6)

where V is the CKM matrix and neutrino masses have
been neglected. We get

L
NP

=
1

⇤2

[(C
1

+C
3

)�uij�
e
kl (ūLi�

µuLj)(⌫̄Lk�µ⌫Ll) +

(C
1

�C
3

)�uij�
e
kl (̄uLi�

µuLj)(ēLk�µeLl) +

(C
1

�C
3

)�dij�
e
kl (d̄Li�

µdLj)(⌫̄Lk�µ⌫Ll) +

(C
1

+C
3

)�dij�
e
kl (d̄Li�

µdLj)(ēLk�µeLl) +

2C
3

�
�udij �

e
kl (ūLi�

µdLj)(ēLk�µ⌫Ll)+h.c.
�
], (7)

where

�qij = V ⇤
q3iVq3j �eij = U⇤

e3iUe3j �udij = V ⇤
u3iVd3j , (8)

with q = u, d. These matrices are redundant since they
satisfy the relations �u = V �dV † and �ud = V �d. We
also observe that �f are hermitian rank-1 matrices, sat-
isfying �f�f = �f and tr�f = 1. In summary, the free
parameters of our Lagrangian are the ratios (C

1,3)/⇤2

and the two matrices �d and �e.
Starting from the e↵ective Lagrangian L

NP

at the scale
⇤, at lower energies an e↵ective Lagrangian is induced by
RGE and by integrating out the heavy degrees of free-
dom. We will detail this procedure elsewhere. Here we
summarize our results, obtained in a leading logarithmic
approximation.
The e↵ective Lagrangian describing the semileptonic

processes b ! s`` and b ! s⌫⌫ is [19]

LNC
e↵

=
4GFp

2
�bs

⇣
Cij
⌫ Oij

⌫ + Cij
9

Oij
9

+ Cij
10

Oij
10

⌘
+ h.c. ,

(9)
where �bs=VtbV

⇤
ts and the operators O⌫ and O

9,10 read

Oij
⌫ =

e2

(4⇡)2
(s̄L�µbL)(⌫̄i�

µ(1��
5

)⌫j) , (10)

Oij
9

=
e2

(4⇡)2
(s̄L�µbL)(ēi�

µej) , (11)

Oij
10

=
e2

(4⇡)2
(s̄L�µbL)(ēi�

µ�
5

ej) . (12)

By matching LNC
e↵

with L
NP

, we obtain:

Cij
9

=� Cij
10

=
4⇡2

e2�bs

v2

⇤2

(C
1

+C
3

)�d
23

�eij + · · · , (13)

Cij
⌫ =

4⇡2

e2�bs

v2

⇤2

(C
1

�C
3

)�d
23

�eij + · · · , (14)

where dots stand for RGE induced terms which are al-
ways subdominant, unless C

1

= �C
3

or C
1

= C
3

. The
latter condition, which can be realised in scenarios with

vector leptoquark mediators [17], received a lot of atten-
tion in the literature as it allows to avoid the B!K(⇤)⌫⌫̄
constraint. We point out that such condition is not sta-
ble under quantum corrections. RGE e↵ects driven by
the gauge interactions generate a rather large correction
to c� = C

1

� C
3

at the electroweak scale

�c� ⇡ �0.03C
3

log

✓
⇤

mZ

◆
, (15)

which is of order |�c�| ⇠ 0.1 for C
3

= 1 and ⇤ ⇠ TeV.
The e↵ective Lagrangian relevant for charged-current

processes like b ! c`⌫ is given by

LCC
e↵

=�4GFp
2

Vcb (C
cb
L )ij (c̄L�µbL) (ēLi�

µ⌫Lj)+h.c. , (16)

where the coe�cient (Ccb
L )ij reads

(Ccb
L )ij = �ij � v2

⇤2

�ud
23

Vcb
C

3

�eij . (17)

One of the e↵ects due to L
NP

is the modification of
the leptonic couplings of the vector bosons W and Z.
Focusing on the Z couplings, which are the most tightly
constrained by the experimental data, we find that

LZ =
g
2

cW
ēi
⇣
Z/ gij`LPL + Z/ gij`RPR

⌘
ej +

g
2

cW
⌫̄Li Z/ gij⌫L ⌫Lj ,

(18)
where gfL,R = gSM

fL,R +�gfL,R, cW = cos ✓W and

�gij`L'
v2

⇤2

✓
3y2t c��

u
33

Lt+g2
2

C
3

Lz+
g2
1

3
C

1

Lz

◆
�eij
16⇡2

, (19)

�gij⌫L'
v2

⇤2

✓
3y2t c+�

u
33

Lt�g2
2

C
3

Lz+
g2
1

3
C

1

Lz

◆
�eij
16⇡2

, (20)

with Lt = log (⇤/mt), Lz = log (⇤/mZ) and �g`R = 0.
The above expressions provide a good approximation of
the exact results, which will be given elsewhere and which
have been obtained adding to the RGE contributions
from gauge and top yukawa interactions the explicit one-
loop matrix element with the Z four-momentum set on
the mass-shell. The scale dependence of the RGE contri-
bution cancels with that of the matrix element dominated
by a quark loop. Hereafter, we systematically neglect
corrections of order m2

q/(16⇡
2⇤2) when q = u, d, c, s, b.

Quantum e↵ects generate also a purely leptonic e↵ec-
tive Lagrangian, as well as corrections to the semileptonic
interactions. After running the Wilson coe�cients from
⇤ down to the electroweak scale and integrating out the
W , Z and the heavy quarks c, b, and t, we get the leading
terms:

L`
e↵

=�4GFp
2
�eij


(eLi�µeLj)

X
 
 �µ 

�
2gZ
 c

e
t �Q c

e
�

�

+ ccct (eLi�µ⌫Lj)(⌫Lk�
µeLk + uLk�

µVkldLl)+ h.c.

�
, (21)

Different	proposal	with	h	τR	by	Choudhury,	
Kundu,Mandal,	Sinha,		arXiv:1706.08437		

3

(7.73 ± 0.49) ⇥ 10�7 [20]. Similarly, none of the three
operators (b, s) (⌫i, ⌫i) may receive large corrections lest
the SM expectations, namely [26]

BR(B+ ! K

+

⌫⌫)
SM

= (3.98± 0.43± 0.19)⇥ 10�6

,

BR(B0 ! K

⇤0
⌫⌫)

SM

= (9.19± 0.86± 0.50)⇥ 10�6

,

(10)
be augmented3 to levels beyond the 90% C.L upper
bounds (summed over all three neutrinos) as obtained
by the Belle collaboration [29], viz.

BR(B ! K

(⇤)
⌫⌫) < 1.6 (2.7)⇥ 10�5

. (11)

In view of the aforementioned constraints, we consider
only a combination of two 4-fermi operators, character-
ized by a single WC (assumed to be real to avoid new
sources of CP violation). Since we do not claim to obtain
the ultraviolet completion thereof, we do not speculate
on the (flavor) symmetry that would have led to such a
structure, which could have arisen from a plethora of NP
scenarios, such as models of (gauged) flavor, leptoquarks
(or, within the supersymmetric paradigm, a breaking of
R-parity) etc. To wit, we propose a model involving two
four-fermi operators in terms of the second and third gen-
eration (weak-eigenstate) fields

HNP = A

1

(Q
2L�µL3L) (L3L�

µ
Q

3L)

+A

2

(Q
2L�µQ3L) (⌧R�

µ
⌧R) (12)

where the overall Clebsch-Gordan coe�cients have been
subsumed and we demand A

2

= A

1

.
This operator, seemingly, contributes to R(D(⇤)) but

not to the other anomalous processes. This, though, is
true only above the electroweak scale. Below this scale,
the Hamiltonian needs to be rediagonalized4 In the quark
sector, this is determined by the quark masses and the
small non-alignment due to A

1,2 can be neglected. In
the leptonic sector, though, the extreme smallness of the
neutrino masses implies that the nonuniversal term HNP

plays a major role [30]. To this end, we consider the
simplest of field rotations for the left-handed leptons from
the unprimed (flavor) to the primed (mass) basis, namely

⌧ = cos ✓ ⌧ 0 +sin ✓ µ0
, ⌫⌧ = cos ✓ ⌫0⌧ +sin ✓ ⌫0µ . (13)

This, immediately, generates a term with the potential
to explain the b ! sµµ anomalies.

Results — The scenario is, thus, characterized by two
parameters, namely A

1

and sin ✓. The best fit values

3 Note that the neutrino flavors need not be identical for the NP.
4 With NP only modifying the Wilson coe�cients of certain SM
operators to a small extent, the QCD corrections (as well as
hadronic uncertainties) are analogous. Additional e↵ects due to
operator mixings are too small to be of any concern.

for these can be obtained by e↵ecting a �

2-test defined
through

�

2 =
7X

i=1

�
Oexp

i �Oth

i

�
2

(�Oexp

i )
2

+
�
�Oth

i

�
2

(14)

where Oexp

i (Oth

i ) denote the experimental (theoreti-
cal) mean and �Oexp

i (�Oth

i ) the corresponding 1� un-
certainty, with the theoretical values depending on the
model parameters. We include a total of seven measure-
ments for the evaluation of �

2, namely, R(D), R(D⇤),
RK , R low

K⇤ , R cntr

K⇤ , �, and BR(Bs ! µµ) (while not af-
fected by the NP interactions in Eq. (12), is relevant
for the scenario considered later). Only for the last two
observables, do �Oth

i need to be considered explicitly ,
while, for the rest, they have been subsumed within the
experimental results. For our numerical analysis, we use
Vcb = 0.0416 , VtbV

⇤
ts = �0.0409, and find, for the SM,

�

2

SM

' 46.
Within the new model, the best fit corresponds to

�

2

min

' 9 (denoting a marked improvement) with the NP
contributions being C

NP

9

= �1.7 and C

NP = �2.12. In
terms of the model parameters, this corresponds to (note
that there is a ✓ ! �✓ degeneracy)

A

1

(= A

2

) = �2.92 TeV�2

, sin ✓ = ±0.022 , (15)

Even this low value of �

2

min

is largely dominated by a
single measurement, namely, R

low

K⇤ . This is not unex-
pected, as an agreement to this experimental value to
better than 1� is not possible if the NP contribution
can be expressed just as a modification of the SM WCs,
rather than through the introduction of a new and small
dynamical scale (such a change could be tuned so as to
manifest itself primarily only in the low-q2 region, but is
likely to have other ramifications). Note that the small
value of sin ✓ can only partially explain the atmospheric
neutrino oscillation, while the full explanation needs ad-
ditional dynamics.

FIG. 1. The light and dark blue regions denote 95% and 99%
C.L. bands around the best-fit points. The red shaded region
is allowed by bounds from BR(B+ ! K+µ�⌧+).

More importantly, in e↵ecting the field rotation of Eq.
(13) in HNP, we generate terms of the form (s, b)(µ, ⌧),



from	Feruglio	et	al,	1606.00524	
color	regions	are	allowed	

the	experimental	bounds	on	Z	and	τ	decays	significantly	constrain	LFU	
breaking	effects	in	B-decays,	

4

leading to the following numerical estimate

N⌫ ⇡ 3 + 0.008
(c

+

� 0.2C
3

)

⇤2(TeV)
, (34)

to be compared with the experimental result [20]

N⌫ = 2.9840± 0.0082 . (35)

Finally, we have checked that B(Z ! µ±⌧⌥) is always
well below the current experimental bound.
LFU breaking e↵ects in ⌧ ! `⌫̄⌫ (with `

1,2 = e, µ) are
described by the observables

R⌧/`1,2
⌧ =

B(⌧ ! `
2,1⌫⌫̄)exp/B(⌧ ! `

2,1⌫⌫̄)SM
B(µ ! e⌫⌫̄)

exp

/B(µ ! e⌫⌫̄)
SM

, (36)

and are experimentally tested at the few ‰ level [25]

R⌧/µ
⌧ = 1.0022± 0.0030 , R⌧/e

⌧ = 1.0060± 0.0030 . (37)

We find

R⌧/`
⌧ ' 1 + 2 ccct �e

33

⇡ 1 +
0.008C

3

⇤2(TeV)
. (38)

The e↵ective Lagrangian of eq. (21) generates LFV pro-
cesses such as ⌧ ! µ`` and ⌧ ! µP with P = ⇡, ⌘, ⌘0, ⇢,
etc. The most sensitive channels, taking into account
their NP sensitivities and experimental resolutions, are
⌧ ! µ``, ⌧ ! µ⇢ and ⌧ ! µ⇡. For ⌧ ! µ`` we find

B(⌧ ! µ``)

B(⌧ ! µ⌫⌫̄)
= |�e

23

|2
h
(1 + �`µ)(cLR � cet )

2+ c2LR

i
, (39)

where cLR = 2s2W cet + ce� . If c� ⇠ O(1), we obtain

B(⌧ ! 3µ) ⇡ 5⇥ 10�8

c 2

�
⇤4(TeV)

✓
�e
23

0.3

◆
2

, (40)

while the current bound is B(⌧ ! 3µ)  1.2⇥ 10�8 [24].
Setting c�(⇤) = 0 leads to B(⌧ ! 3µ) ⇡ 4 ⇥ 10�9 for
⇤ = 1 TeV, �e

23

= 0.3 and C
1

= C
3

= 1, yet within the
future expected experimental sensitivity. Moreover, it
turns out that 1.5 <⇠ B(⌧!3µ)/B(⌧!µee) <⇠ 2. Finally,
employing the general formulae of ref. [26], we find

B(⌧ ! µ⇢) ⇡ 2 |�e
23

|2 ⇥(2s2W � 1)cet + ce�
⇤
2 B(⌧ ! ⌫⇢)

⇡ 5⇥ 10�8

(c� � 0.28C
3

)2

⇤4(TeV)

✓
�e
23

0.3

◆
2

, (41)

and

B(⌧ ! µ⇡) ⇡ 2 |�e
23

|2 [cet ]2 B(⌧ ! ⌫⇡)

⇡ 8⇥ 10�8

c2�
⇤4(TeV)

✓
�e
23

0.3

◆
2

, (42)

where the current bounds are B(⌧ ! µ⇢)  1.5 ⇥ 10�8

and B(⌧ ! µ⇡)  2.7⇥ 10�8 [24].

FIG. 1: Upper plot: Rµ/e
K vs. R⌧/`

D(⇤) for C1 = 0, |C3|  3,

|�d
23|  0.04 and |�e

23|  1/2. The allowed regions are coloured
according to the legend. Lower plot: B(B ! K⌧µ) vs. B(⌧ !
3µ) for |�d

23| = 0.01, C1 = C3 (green points) or C1 = 0 (blue

points) imposing all the experimental bounds except R⌧/`

D(⇤) .

We discuss now the necessary conditions to accommo-
date the B-physics anomalies and their phenomenological
implications. Two scenarios are envisaged: i) C

1

= 0
and C

3

6= 0 and ii) C
1

= C
3

. In both cases, the
correct pattern of deviation from the SM expectations is
reproduced for C

3

< 0, |�d
23

/Vcb| < 1 and �d
23

< 0, see
eqs. (24), (26). Moreover, for |C

3

| ⇠ O(1), the upper
bound ⇤ <⇠ 1 TeV and the lower bound |�e

23

| >⇠ 0.1 are
also predicted. The major di↵erences between the two
scenarios concern the impact of the constraints from
Z-pole and ⌧ observables. In particular, from eqs. (30)
and (32) we learn that NP e↵ects in v⌧/ve and a⌧/ae
are uncomfortably large in scenario i) while they are
under control in ii). Similarly, B(⌧ ! 3µ) is one order
of magnitude larger in i) than in ii), see eq. (40) and
following discussion. Most importantly, we find that

R⌧/`
⌧ strongly disfavours an explanation of the R⌧/`

D(⇤)

anomaly based on left-handed e↵ective operators, see
eqs. (26), (38). This is confirmed by the upper plot

Effec>ve	Lagrangian	receives	one-loop	
induced	RGE	contribu>ons	of	order	
yt2/16π2	and	e2/16π2.		

•  leptonic	couplings	to	W	and	Z	
vector	bosons	are	modified.		

•  quantum	effects	generate	also	a	
purely	leptonic	effec>ve	
Lagrangian		and	correc>ons	to	the	
semileptonic	interac>ons		

	



Bu�azzo,	Greljo,		Isidoria,		Marzocca		1706.07808	
•  exemplify	the	general	EFT	results	–	search	for	a	model	with	mediators	in	

the	TeV	range;	
•  coloured	scalar	or	vector	leptoquarks	and	colour-less	vectors.		
	SU(2)L-singlet	vector	leptoquark	emerges	as	a	par>cularly	simple	and	
successful	framework!	
	

Search	for	a	model	with	mediators	in	the	TeV	range;	

Observable Experimental bound Linearised expression

R⌧`
D(⇤) 1.237± 0.053 1 + 2CT (1� �q

sbV
⇤
tb/V

⇤
ts)(1� �`

µµ/2)

�Cµ
9

= ��Cµ
10

�0.61± 0.12 [36] � ⇡
↵emVtbV

⇤
ts
�`
µµ�

q
sb(CT + CS)

Rµe
b!c � 1 0.00± 0.02 2CT (1� �q

sbV
⇤
tb/V

⇤
ts)�

`
µµ

BK(⇤)⌫⌫̄
0.0± 2.6 1 + 2

3

⇡
↵emVtbV

⇤
tsC

SM
⌫

(CT � CS)�
q
sb(1 + �`

µµ)

�gZ⌧L
�0.0002± 0.0006 0.033CT � 0.043CS

�gZ⌫⌧ �0.0040± 0.0021 �0.033CT � 0.043CS

|gW⌧ /gW` | 1.00097± 0.00098 1� 0.084CT

B(⌧ ! 3µ) (0.0± 0.6)⇥ 10�8 2.5⇥ 10�4(CS � CT )2(�`
⌧µ)

2

Table 1: Observables entering in the fit, together with the associated experimental bounds
(assuming the uncertainties follow the Gaussian distribution) and their linearised expressions in
terms of the EFT parameters. The full expressions used in the fit can be found in Appendix B.

1. The factorised flavour structure in Eq. (1) is not the most general one; however, it is general
enough given that the available data are sensitive only to the flavour-breaking couplings
�q
sb and �`

µµ (and, to a minor extent, also to �`
⌧µ). By construction, �q

bb = �`
⌧⌧ = 1.

2. The choice of basis in Eq. (2) to define the U(2)q ⇥U(2)` singlets (i.e. to define the “third
generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects itself in the
values of �q

sb, �
`
µµ, and �`

⌧µ, that, in absence of a specific basis alignment, are expected to
be

�q
sb = O(|Vcb|) , �`

⌧µ = O(|V⌧µ|) , �`
µµ = O(|V⌧µ|2) . (3)

3. A particularly restrictive scenario, that can be implemented both in the case of LQ or
colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that there
exists a flavour basis where the NP interaction is completely aligned along the flavour
singlets. For both mediators, in this specific limit one arrives to the prediction �`

µµ > 0.

In order to reduce the number of free parameters, in Eq. (1) we assume the same flavour
structure for the two operators. This condition is realised in specific simplified models, but it
does not hold in general. The consequences of relaxing this assumption are discussed in Section 3
in the context of specific examples. Finally, motivated by the absence of deviations from the SM
in CP-violating observables, we assume all the complex phases, except the CKM phase contained
in the Vq spurion, to vanish (as shown in Appendix A, this implies �q

bs = �q
sb and �`

⌧µ = �`
µ⌧ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies, we
perform a fit to low-energy data with four free parameters: CT , CS , �

q
sb, and �`

µµ, while for

simplicity we set �`
⌧µ = 0.1 The set of experimental measurements entering the fit, together

1We explicitly verified that a nonzero �⌧µ has no impact on the fit results.

6



All	test	passes	SU(2)L-singlet	vector		
leptoquark	(3,1,2/3)	
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Figure 3: The lines show the correlations among triplet and singlet operators in single-mediator models.
Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in red. Electroweak
singlet mediators are shown with the solid lines while triplets with dashed.

compensate for the radiative constraints (see Figure 1 bottom-right). In other words, in the
small �q

sb scenario the tuning problem is moved from the �F = 2 sector to that of electroweak
observables. We will present an explicit realisation of the small �q

sb scenario in Section 3.3.

3 Simplified models

In this section we analyse how the general results discussed in the previous section can be
implemented, and eventually modified adding extra ingredients, in three specific (simplified)
UV scenarios with explicit mediators.

The complete set of single-mediator models with tree-level matching to the vector triplet
and/or singlet V � A operators consists of: colour-singlet vectors B0

µ ⇠ (1,1, 0) and W 0
µ ⇠

(1,3, 0), colour-triplet scalars S
1

⇠ (3̄,3, 1/3) and S
3

⇠ (3̄,3, 1/3), and coloured vectors Uµ
1

⇠
(3,1, 2/3) and Uµ

3

⇠ (3,3, 2/3) [46]. The quantum numbers in brackets indicate colour, weak,
and hypercharge representations, respectively. In Figure 3 we show the correlation between
triplet and singlet operators predicted in all single-mediator models, compared to the regions
favoured by the EFT fit.

The plot in Figure 3 clearly singles out the case of a vector LQ, Uµ
1

, which we closely
examine in the next subsection, as the best single-mediator case. However, it must be stressed
that there is no fundamental reason to expect the low-energy anomalies to be saturated by the
contribution of a single tree-level mediator. In fact, in many UV completions incorporating one of
these mediators (for example in composite Higgs models, see Section 4), these states often arise
with partners of similar mass but di↵erent electroweak representation, and it is thus natural
to consider two or more of them at the same time. For this reason, and also for illustrative

11

Helps	to	know:	according	to	Asad,	Fornal		Grinstein	
1708.06350;	
proton	decay	at	tree	cannot	be	mediated	by		U(3,1,2/3).	

Figure 4: Fit to semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for the
vector leptoquark Uµ, imposing |�sµ,s⌧ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we show the
��2  2.3 (1�), 6.0 (2�), and 11.6 (3�) regions, respectively. The dashed and solid blue lines represent
the 1 and 2� limits in the case where radiative constraints are removed from the fit.

purposes, in the following subsections we consider two representative cases with more than one
mediator at work: two colour-less vectors, SU(2)L triplet and singlet, and two coloured scalars,
also electroweak triplet and singlet.

3.1 Scenario I: Vector Leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is that
of an SU(2)L-singlet vector leptoquark, U

µ
1

⌘ (3,1, 2/3), coupled to the left-handed quark and
lepton currents

LU = � 1

2
U †
1,µ⌫U

1,µ⌫ +M2

UU
†
1,µU

µ
1

+ gU (J
µ
UU1,µ + h.c.) , (7)

Jµ
U ⌘ �i↵ Q̄i�

µL↵ . (8)

Here �(0)

i↵ = �
3i�3↵ up to U(2)q ⇥ U(2)` breaking terms, as shown in Eq. (28), and the flavour

structure used in the general fit is recovered by means of the relations (30). After integrating
out the leptoquark field, the tree-level matching condition for the EFT is

L
e↵

� � 1

v2
CU �i↵�

⇤
j�

h

(Q̄i
L�µ�

aQj
L)(L̄

�
L�

µ�aL↵
L) + (Q̄i

L�µQ
j
L)(L̄

�
L�

µL↵
L)
i

, (9)

where CU = v2|gU |2/(2M2

U ) > 0. Note that in this case the singlet and triplet operators have
the same flavour structure and, importantly, the relation CS = CT is automatically fulfilled at
the tree-level. Furthermore, as already stressed, the flavour-blind contraction involving light
fermions (flavour doublets) is automatically forbidden by the U(2)q⇥U(2)` symmetry. Last but

12



Models	of	NP	for	RD(*)	

Color	singlet								Color	tripet	
	

Spin	

0											2HDM																							Scalar	LQ		

1											W’	,Z’																								Vector		LQ		

	S.F.	J.F.	Kamenik,	I.	Nišandžić,	J.	Zupan,		
1206.187;	
	
2	HDM:	Celis,		Jung,	Li,	Pich	1612.07757,					
1210.8443;	
W’:	Greljo,	Isidori,	Marzocca,1506.01705	
		
Scalar	LQ:	
e.g.	LQ:	Doršner,	SF,	Greljo,	Kamenik.,	
	Košnik,	(1603.04993),		
Crivellin	et	al,	1703.09226	
	

	Scalar	or	Vector	LQ	
Bu�azzo	et	al,	1706.07808,	
	
Vector	LQ:	Greljo	et	al,	1708.08450	
Calibbi	et	al,	1708.00692	
	

SUSY		with	R-parity	viola>on	
		Altmannshofer	et	al,	arXiv:
1704.06659	

R	parity	-	sbo�om	



•  2HDMII		cannot	explain	RD(*)	

•  New	gauge	bosons,	W’,	Z’-	difficult	to	construct	UV	complete	theory		
		

Leptoquarks?	

Nature	of	anomaly	requires	NP	in	quark	and	lepton	sector!		
It	seems	that	LQs	are	ideal	candidates	to	explain	all	B	anomalies	at	tree	leve!	

A new model for RK and RD
D. Becirevic, S. Fajfer, N. Kosnik, OS. 1608.08051

We can also explain RD if a new ingredient is added to the model
�1/6 = (3, 2)1/6: three light RH neutrinos ⌫R.

LY = YL
ij L̄i

e�(1/6)dRj +YR
ij Q̄i�

(1/6)⌫Rj + h.c.

For b ! c⌧ ⌫̄ ) |M(B ! D (⇤)`⌫)|2 = |M
SM

|2 + |M
NP

|2.

Naturally generates RNP
D(⇤) > RSM

D(⇤) if |Y L
b⌧ | & |Y L

bµ|.
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LQ 

l 

q 

Leptoquarks	as	a	resolu>on	of	B	anomalies:	

1)	1974	Salam	&	Pa>:	par>al	unifica>on	of	quark	and	leptons	–four	color	charges,		
le�-right	symmetry;	
	
2)	GUT	models	contain	them	as	gauge	bosons		(e.g.	Georgi-Glashow	1974);	
	
3)	Within	GUT	they	can	be	scalars	too;	
	
4)	1997	false	signal	et	DESY	(~200	GeV);	
	
5)	In	recent	years	LQ	might	offer		explana>ons	of	B	physics	anomalies;	
	
6)	LHC	has	bounds	on	the	masses	of	LQ1,LQ2,	LQ3	of	the	order	~	1	TeV.	

Brief	“history”		



SU(3)⇥ SU(2)⇥ U(1) Spin Symbol Type 3B + L
(3,3, 1/3) 0 S3 LL (SL

1 ) �2

(3,2, 7/6) 0 R2 RL (SL
1/2), LR (SR

1/2) 0

(3,2, 1/6) 0 ˜R2 RL (

˜SL
1/2), LR 0

(3,1, 4/3) 0 ˜S1 RR (

˜SR
0 ) �2

(3,1, 1/3) 0 S1 LL (SL
0 ), RR (SR

0 ), RR �2

(3,1,�2/3) 0 ¯S1 RR �2

(3,3, 2/3) 1 U3 LL (V L
1 ) 0

(3,2, 5/6) 1 V2 RL (V L
1/2), LR (V R

1/2) �2

(3,2,�1/6) 1 ˜V2 RL (

˜V L
1/2), LR �2

(3,1, 5/3) 1 ˜U1 RR (

˜V R
0 ) 0

(3,1, 2/3) 1 U1 LL (V L
0 ), RR (V R

0 ), RR 0

(3,1,�1/3) 1 ¯U1 RR 0

Table 1: List of scalar and vector leptoquarks. See text for details.

leptoquark states. The SM fermions are Li
L ⌘ (1,2,�1/2)i = (⌫iL eiL)

T ,
eiR ⌘ (1,1,�1)

i, Qi
L ⌘ (3,2, 1/6)i = (ui

L diL)
T , ui

R ⌘ (3,1, 2/3)i, and
diR ⌘ (3,1,�1/3)i, where the numbers within brackets represent the SM gauge
group SU(3) ⇥ SU(2) ⇥ U(1) transformation properties. For example, a state
denoted as (3,2, 1/6) transforms as triplet (doublet) of SU(3) (SU(2)) with the
U(1) hypercharge of 1/6. Superscript i(= 1, 2, 3) is a flavor index and subscripts
L and R denote left- and right-chiral fermion fields, respectively. Superscript T
will always stand for transposition. It is in the SU(2) group space of the SM
in this particular instance. We take quarks (leptons) to have baryon (lepton)
number B = 1/3 (L = 1) in accordance with the usual convention.

The (hyper)charge normalization is defined through ˆQ = I3 +Y , where ˆQ is
the electric charge operator that yields eigenvalues Q in units of absolute value
of the electron charge, I3 stands for the diagonal generator of SU(2), and Y
represents U(1) hypercharge operator. The electric charge of dR ⌘ (3,1,�1/3)
is, for example, Q = 0 + (�1/3) = �1/3, where dR is right-chiral down-type
quark.

At least two neutrinos are conclusively massive. However, their Dirac and/or
Majorana nature is not yet experimentally ascertained. One might accordingly
add to the SM fermion content one or more electrically neutral fields that could
take on a role of right-chiral neutrinos. We denote these hypothetical fermions
with ⌫R(⌘ (1,1, 0)). If these states are added one could have more LQ states
than there would be in the SM model with purely left-chiral neutrinos. We
include this possibility to insure generality of our considerations.

The list of all possible LQs is given in Table 1. There are, all in all, six
scalar and six vector leptoquark multiplets if one uses transformations under
the SM gauge group as the classification criterion. In the first column we ex-
plicitly specify the SM transformation properties that can be easily understood
on purely group theoretical grounds as follows.

5

F=3B	+L		fermion	number;	F=0		no	proton		decay	at	tree	level	(see	Assad	et	al,	
1708.06350)			

Leptoquarks	in	RK	and			RD(*)		

Q=I3	+Y	color	SU(3),	weak	isospin	SU(2)	,	weak	hypercharge	U(1)	

Suggested	by	many	authors:	naturally	acoomodate	LUV	and	LFV	

Doršner,	SF,	Greljo,	Kamenik		Košnik,	(1603.04993)	



One	Leptoqaurk	resolving	both	B	anomalies:	

Tree	level	solu>ons	for	RD(*)	and	RK(*)	
	
Right-handed	neutrino	introduced	LQ	(3,2,1/6)	
	
	
	
Becirevic	et	al,	1608.08501	
passes	all	flavor	constraints	but	leads	to	RK*>1!		
	

A new model for RK and RD
D. Becirevic, S. Fajfer, N. Kosnik, OS. 1608.08051

We can also explain RD if a new ingredient is added to the model
�1/6 = (3, 2)1/6: three light RH neutrinos ⌫R.

LY = YL
ij L̄i

e�(1/6)dRj +YR
ij Q̄i�

(1/6)⌫Rj + h.c.

For b ! c⌧ ⌫̄ ) |M(B ! D (⇤)`⌫)|2 = |M
SM

|2 + |M
NP

|2.

Naturally generates RNP
D(⇤) > RSM

D(⇤) if |Y L
b⌧ | & |Y L

bµ|.
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FIG. 1. Tree-level diagrams contributing to weak decays.

and U
q

(V
q

) denote the rotations of the left-handed
(right-handed) fermion fields. These definitions imply

V T

CKM �L

ue

= �L

d⌫

U
e

, (6)

which involves the CKM matrix VCKM = U †
u

U
d

. ATLAS
and CMS have searched for pair-produced leptoquarks in
various final states. The search channels ��⇤ ! µ+µ�jj
and ��⇤ ! bb̄⌫⌫̄ are the most relevant ones for our anal-
ysis. The most recent ATLAS/CMS analyses exclude a
leptoquark lighter than 850 GeV/760 GeV at 95% CL,
assuming Br(� ! µj) = 0.5 [27, 28]. ATLAS also derives
a lower bound of 625 GeV assuming Br(� ! b⌫) = 1 [27].
These bounds can be weakened by reducing the branch-
ing fractions to the relevant final states.

Tree-Level Processes. The leptoquark � mediates
semileptonic B-meson decays at tree level, as shown in
the first graph of Figure 1. This gives rise to the e↵ective
Lagrangian

L(�)
e↵ =

1

2M2
�


� �L⇤

ui`j
�L

b⌫k
ūi

L

�
µ

b
L

¯̀j
L

�µ⌫k

L

(7)

+ �R⇤
ui`j

�L

b⌫k

✓
ūi

R

b
L

¯̀j
R

⌫k

L

� ūi

R

�
µ⌫

b
L

¯̀j
R

�µ⌫⌫k

L

4

◆�
,

where i, j, k are flavor indices. The first term generates
additive contributions to the CKM matrix elements V

ub

and V
cb

, which may be di↵erent for the di↵erent lepton
flavors. The second term includes novel tensor struc-
tures not present in the SM. It may help to explain why
determinations of V

ub

and V
cb

from inclusive and exclu-
sive B-meson decays give rise to di↵erent results. Of
particular interest are the decays B̄ ! D(⇤)⌧ ⌫̄, whose
rates are found to be about 30% larger than in the
SM. A model-independent analysis of this anomaly in
the context of e↵ective operators, including the e↵ects of
renormalization-group (RG) evolution from µ = M

�

to
µ = m

b

, has been performed in [13, 17]. In the last pa-
per it was found that an excellent fit to the experimental
data is obtained for a scalar leptoquark with parameters

�L⇤
c⌧

�L

b⌫⌧
⇡ 0.35 M̂2

�

, �R⇤
c⌧

�L

b⌫⌧
⇡ �0.03 M̂2

�

(8)

with large and anti-correlated errors, where it was as-
sumed that the only relevant neutrino is ⌫

⌧

, as only this
amplitude can interfere with the SM and hence give rise
to a large e↵ect. Throughout this letter M̂

�

⌘ M
�

/TeV.
For a leptoquark mass near the TeV scale, these con-
ditions can naturally be satisfied with O(1) left-handed

and somewhat smaller right-handed couplings. We will
ignore the three other fit solutions found in [17], since
they require significantly larger couplings.

Our model also gives rise to tree-level flavor-changing
neutral currents (FCNCs), some examples of which are
shown in Figure 1. Particularly important for our anal-
ysis are the rare decays B̄ ! K̄⌫⌫̄ and D0 ! µ+µ�.
The e↵ective Lagrangian for B̄ ! K̄(⇤)⌫⌫̄ as well as the
corresponding inclusive decay reads

L(�)
e↵ =

1

2M2
�

�L⇤
s⌫i

�L

b⌫j
s̄
L

�
µ

b
L

⌫̄i

L

�µ⌫j

L

. (9)

Apart from possibly di↵erent neutrino flavors, this in-
volves the same operator as in the SM. It follows that
the ratio R

⌫⌫̄

= �/�SM for either the exclusive or the
inclusive decays is given by

R(�)
⌫⌫̄

= 1 � 2r

3
Re

�
�L�L†�

bs

V
tb

V ⇤
ts

+
r2

3

�
�L�L†�

bb

�
�L�L†�

ss��V
tb

V ⇤
ts

��2
,

(10)
where

�
�L�L†�

bs

=
P

i

�L

b⌫i
�L⇤
s⌫i

etc., and

r =
s4
W

2↵2

1

X0(xt

)

m2
W

M2
�

⇡ 1.91

M̂2
�

. (11)

Here X0(xt

) = xt(2+xt)
8(xt�1) + 3xt(xt�2)

8(1�xt)2
ln x

t

⇡ 1.48 with x
t

=

m2
t

/m2
W

denotes the SM loop function, and s2
W

= 0.2313
is the sine squared of the weak mixing angle. Currently
the strongest constraint arises from upper bounds on the
exclusive modes B� ! K�⌫⌫̄ and B� ! K⇤�⌫⌫̄ ob-
tained by BaBar [29] and Belle [30], which yield R

⌫⌫̄

<
4.3 and R

⌫⌫̄

< 4.4 at 90% CL [31]. Using the Schwarz
inequality, we then obtain from (10)

� 1.20 M̂2
�

< Re

�
�L�L†�

bs

V
tb

V ⇤
ts

< 2.25 M̂2
�

. (12)

The FCNC process D0 ! µ+µ� can arise at tree level
in our model. Neglecting the SM contribution, which is
two orders of magnitude smaller than the current exper-
imental upper bound, we find the decay rate

� =
f2
D

m3
D

256⇡M4
�

✓
m

D

m
c

◆2

�
µ

"
�2
µ

���L

cµ

�R⇤
uµ

� �R

cµ

�L⇤
uµ

��2 (13)

+

�����
L

cµ

�R⇤
uµ

+�R

cµ

�L⇤
uµ

+
2m

µ

m
c

m2
D

�
�L

cµ

�L⇤
uµ

+�R

cµ

�R⇤
uµ

�����
2
#
,

where f
D

= 212(1) MeV [32] is the D-meson decay con-
stant and �

µ

= (1 � 4m2
µ

/m2
D

)1/2. We use the running
charm-quark mass m

c

⌘ m
c

(M
�

) ⇡ 0.54 GeV to prop-
erly account for RG evolution e↵ects up to the high scale
M

�

⇠ 1 TeV. Assuming that either the mixed-chirality
or the same-chirality couplings dominate, we derive from
the current experimental upper limit Br(D0 ! µ+µ�) <
7.6 · 10�9 (at 95% CL) [33] the bounds

q���L

cµ

��2���R

uµ

��2 +
���R

cµ

��2���L

uµ

��2 < 1.2 · 10�3 M̂2
�

,
���L

cµ

�L⇤
uµ

+ �R

cµ

�R⇤
uµ

�� < 0.051 M̂2
�

.
(14)

3

Compared with [34] we obtain a stronger bound on the
mixed-chirality couplings, because we include RG evolu-
tion e↵ects of the charm-quark mass. On the other hand,
a stronger bound (by about a factor 3) than ours on the
same-chirality couplings can be derived from the decay
D+ ! ⇡+µ+µ� [34, 35]. A comprehensive analysis of
other rare charm processes along the lines of these ref-
erences is left for future work. Note that relations (8),
(12) and (14) can naturally be satisfied assuming hier-
archical matrices with O(1) entries for the left-handed
couplings and an overall suppression of right-handed cou-
plings. Such a suppression is technically natural, since
the right-handed couplings arise from a di↵erent opera-
tor in the Lagrangian (4).

Loop-Induced Processes. Earlier this year, LHCb has
reported a striking departure from lepton universality in
the ratio R

K

in (2) [18]. Leptoquarks can provide a nat-
ural source of flavor universality violation, because their
couplings to fermions are not governed by gauge sym-
metries, see e.g. [36, 37]. A model-independent analysis
of this observable was presented in [38–40], while global
fits combining the data on R

K

with other observables
in b ! s`+`� transitions (in particular angular distri-
butions in B̄ ! K̄⇤µ+µ�) were performed in [23–26].
The authors of [38–40] also studied leptoquark models,
in which contributions to R

K

arise at tree level. In this
case the leptoquark mass is expected to be outside the
reach for discovery at the LHC, unless the relevant cou-
plings are very small. In our model e↵ects on R

K

arise
first at one-loop order from diagrams such as those shown
in Figure 2, while we do not find any contributions from
flavor-changing � and Z penguins. Working in the limit
where M2

�

� m2
t,W

, we obtain for the contributions to
the relevant Wilson coe�cients in the basis of [38]

Cµ(�)
LL

=
m2

t

8⇡↵M2
�

���L

tµ

��2

� 1

64⇡↵

p
2

G
F

M2
�

�
�L�L†�

bs

V
tb

V ⇤
ts

�
�L†�L

�
µµ

,

Cµ(�)
LR

=
m2

t

16⇡↵M2
�

���R

tµ

��2


ln
M2

�

m2
t

� f(x
t

)

�

� 1

64⇡↵

p
2

G
F

M2
�

�
�L�L†�

bs

V
tb

V ⇤
ts

�
�R†�R

�
µµ

,

(15)

where m
t

⌘ m
t

(m
t

) ⇡ 162.3 GeV is the top-quark mass
and f(x

t

) = 1 + 3
xt�1

�
ln xt
xt�1 � 1

� ⇡ 0.47. Analogous

expressions hold for b ! se+e� transitions. The first
term in each expression arises from the four mixed W– �
box graphs. Relation (6) ensures that the sum of these
diagrams is gauge invariant. Importantly, these terms
inherit the CKM and GIM suppression factors of the
SM box diagrams. The remaining terms result from the
box diagram containing two leptoquarks. A good fit to
the data can be obtained for �1.5 < Cµ

LL

< �0.7 and
Cµ

LR

⇡ 0 at µ ⇠ M
�

, assuming that new physics only
a↵ects the muon mode – the “one-operator benchmark
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FIG. 2. Loop graphs contributing to b ! sµ+µ� transitions.

point” considered in [38]. In this letter we concentrate
on this benchmark point for simplicity. Interestingly, the
global fit to all b ! s`+`� data is also much improved for
Cµ

LL

⇡ �1 and Cµ

LR

⇡ 0 [23–26], and even the slight devi-
ation in the ratio Br(B

s

! µ+µ�)/Br(B
s

! µ+µ�)SM =
0.79 ± 0.20 seen in the combination of LHCb [41] and
CMS [42] measurements can be explained. These ob-
servations yield further evidence for the suppression of
right-handed leptoquark couplings compared with left-
handed ones. We will see below that such a pattern is
also required by purely leptonic rare processes.

The contributions from mixed W– � box graphs in (15)
are controlled by the couplings of the leptoquark to top-
quarks and muons. These terms are predicted to be pos-
itive in our model and hence alone they cannot explain
the R

K

anomaly. The contributions from the box graph
with two internal leptoquarks are thus essential to repro-
duce the benchmark value Cµ

LL

⇡ �1. This requires

X

i

���L

uiµ

��2 Re

�
�L�L†�

bs

V
tb

V ⇤
ts

� 1.74
���L

tµ

��2 ⇡ 12.5 M̂2
�

. (16)

The analogous combination of right-handed couplings
should be smaller, so as to obtain Cµ

LR

⇡ 0. Combin-
ing (16) with the upper bound in (12) yields

s
���L

uµ

��2 +
���L

cµ

��2 +

✓
1 � 0.77

M̂2
�

◆���L

tµ

��2 > 2.36 , (17)

where the top contribution is suppressed for the lep-
toquark masses we consider. In order to reproduce
Cµ

LL

= �0.7 or �1.5 instead of the benchmark value �1,
the right-hand side of this bound must be replaced by 2.0
or 2.9, respectively. The above condition can naturally be
satisfied with a large generation-diagonal coupling �L

cµ

.

The ratio (�L�L†)
bs

/(V
tb

V ⇤
ts

) in (16) can also be con-
strained by the existing measurements of the B

s

� B̄
s

mixing amplitude. In our model the new-physics con-
tribution arises from box diagrams containing two lep-
toquarks, which generate the same operator as in the
SM. It is thus useful to follow the suggestion of the
UTfit Collaboration and define the ratio C

Bs e2i�Bs ⌘
hB

s

|H full
e↵ |B̄

s

i/hB
s

|HSM
e↵ |B̄

s

i [43]. We obtain

C(�)
Bs

e2i�
(�)
Bs = 1 +

1

g4S0(xt

)

m2
W

M2
�

"�
�L�L†�

bs

V
tb

V ⇤
ts

#2

, (18)

where g =
p

4⇡↵/s
W

is the SU(2) gauge coupling, and

S0(xt

) = 4xt�11x2
t+x

3
t

4(1�xt)2
� 3x3

t ln xt

2(1�xt)3
⇡ 2.30 is the loop

Bauer&Neubert,	1511.01900	
RD(*)	at	tree	level		 RK(*)	at	loop	level	

+	muon	anomalous	magne>c	moment	

Bečirević	et	al,	1608.07583	–	troubles	with	charm,	K,	leptonic	decays	and		B ! D(⇤)e(µ)⌫

(3,2,1/6)	

(3,1,-1/3)		 destabilizes	proton!	



(3,3,1/3)	+	(3,1,-1/3)	
Crivellin	et	al,	1703.09226	
	

2

b

⌧⌫

c�1 + �3 b

⌫ ⌫

b�1 � �3 s

`

�3

`

s

FIG. 1: Feynman diagrams contributing to b ! c⌧⌫, b ! s⌫⌫ and b ! s`` processes. Both LQs contribute to b ! c⌧⌫ and
b ! s⌫⌫ but only �3 to b ! s``. Note that with our assumption on the couplings to fermions, the LQs interfere constructively
(destructively) in b ! c⌧⌫ (b ! s⌫⌫).

deviation. Therefore, new particles added to the SM for
explaining R(D) and R(D⇤) cannot be very heavy and
must have sizable couplings. In the past, mainly three
kinds of models with the following new particles have
been proposed:

1. Charged Higgses [21, 48–52]

2. W 0 gauge bosons [11, 14, 53, 54]

3. Leptoquarks [9, 10, 12, 13, 15, 16, 19, 20, 42, 55–60]

Models with charged Higgses lead to (too) large e↵ects
in the total Bc lifetime [61] and, depending on the cou-
pling structure, can also be disfavored by the q2 distribu-
tion [62–64]. Interestingly, if the couplings of the charged
Higgs are chosen in such a way that they are compati-
ble with the measured q2 distribution, these models are
ruled out by direct searches [65].

Models with W 0 gauge bosons are also delicate because
they necessarily involve Z 0 bosons due to SU(2)L gauge
invariance. If the Z 0 width is not unnaturally large, these
models are again ruled out by direct searches [11, 65].

In models with leptoquarks generating left-handed vec-
tor operators the coupling structure should be aligned to
the bottom quark in order to avoid b ! s⌫⌫ bounds.
However, in this case the e↵ect in R(D) and R(D⇤) is
proportional to the small CKM element Vcb and large
third generation couplings are required to account for the
anomalies. These large third generation couplings lead
again to stringent bounds from direct LHC searches [65]
and electroweak precision observables [66]. In princi-
ple, these constraints can be avoided with right-handed
couplings [59] (including possibly right-handed neutri-
nos [16]). However, in such solutions no interference with
the SM appears and very large couplings, close to non-
perturbativity, are required.

As stated above, LHC bounds from ⌧⌧ searches can be
avoided in case of non-CKM suppressed leptoquark con-
tributions to R(D) and R(D⇤). However, for single scalar
leptoquark representations, this leads to unacceptably
large e↵ects in b ! s transitions [59]. Therefore, we pro-
pose a novel solution to the R(D(⇤)) problem in this ar-
ticle: we introduce two scalar leptoquarks with the same
mass M and the same coupling strength to quarks and
leptons; an SU(2)L singlet (�

1

) and an SU(2)L triplet
(�

3

) both with hypercharge Y = �2/3. Here, the crucial

observation is that �
1

and �
3

contribute with opposite
relative sign to R(D(⇤)) than to b ! s⌫⌫ processes such
that the e↵ect in R(D(⇤)) is doubled while the contribu-
tions in B ! K(⇤)⌫⌫ cancel at tree-level (see Fig. 1).
Therefore, the couplings to the second quark genera-
tion can be larger, non-CKM suppressed e↵ects R(D(⇤))
are possible and the required overall coupling strength
is much smaller such that the direct LHC bounds from
⌧⌧ searches are significantly weakened and the remaining
bounds from pair production of third generation LQs are
still below the TeV scale [67, 68]. Furthermore, this solu-
tion results in a simple rescaling of the SM contributions,
predicts naturally R(D)/R(D)

SM

= R(D⇤)/R(D⇤)
SM

and leaves the q2 distribution unchanged. Adding cou-
plings to muons, we can also address the b ! sµµ anoma-
lies with a C

9

= �C
10

like contribution. Finally, adding
a (small) right-handed coupling of �

1

one can in principle
explain aµ.
This article is structured as follows: in the next sec-

tion we will present the contributions of our model to
all relevant observables. Afterwards, we perform a phe-
nomenological analysis in Sec. III before we conclude.

II. MODEL AND OBSERVABLES

The scalar leptoquark singlet �
1

and the triplet �
3

couple to fermions in the following way:

L = �1L
fi Q

c
f i⌧2Li�

†
1

+ �3L
fi Q

c
f i⌧2(⌧ · �

3

)†Li + h.c. . (1)

As motivated in the introduction, we assume that both
leptoquarks have the same mass M . In addition, to can-
cel their e↵ect in b ! s⌫⌫ processes, we impose the dis-
crete symmetry

�L
jk ⌘ �1L

jk , �3L
jk = ei⇡j�L

jk , (2)

on the couplings to fermions. Note that for �
1

there
is in principle an additional coupling �R

fiu
c
f `i�

†
1

allowed.
We will assume that this coupling is zero and neglect
its e↵ect till the discussion of aµ where small values of
�R
fi can be phenomenologically important due to mt/mµ

enhanced e↵ects. For our analysis we assume that the
couplings �L

fi are given in the down-quark basis. I.e. after

•  (3,3,1/3)	alone	has	a	proper	structure	according	to	effec>ve	Lagrangian	–		
it	couples	to	only	le�-handed		quarks	and	leptons.		
•  it	leads	to	to	large	contribu>on	in		B ! K(⇤)⌫⌫̄

Two	LQs	solu>on	of	RD(*)	and		RK(*)	

		
•  radia>ve	correc>ons	to	Z	→	ττ	̄,νν	̄		
observables	are	enhanced	by	the	factor	of		
implying	a	∼	1.5σ	tension	in	RD(∗);	
		

Bu�azzo,	Greljo,		Isidori,		Marzocca		
1706.07808	:	

Poten>ally	large	sμ	coupling	disfavored	by	Ds/K								μν		
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Figure 6: Fit to the semi-leptonic and radiatively-generated purely leptonic observables in Table 1, for
the scalar leptoquarks S1 and S3, imposing |�sµ,s⌧ | < 5|Vcb| and C1,3 > 0. In green, yellow, and gray, we
show the ��2  2.3 (1�), 6.2 (2�), and 11.8 (3�) regions, respectively. In the lower-right panel we show
the preferred values of the fit in the RD(⇤), �Cµ

9 plane, compared with the 1� experimental measurements
(red box). Removing Z ! ⌧ ⌧̄ , ⌫⌫̄ radiative constraints from the fit, the 1- and 2� preferred regions in
this case are shown with solid and dashed blue lines.
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3.2 Scenario II: Scalar Leptoquarks

We introduce two scalar leptoquarks S
1

= (3,1, 1/3) and S
3

= (3,3, 1/3). The relevant inter-
action Lagrangian is given by [46]

L � g
1

y
1 i↵(Q̄

c i
L ✏L↵

L)S1

+ g
3

y
3 i↵(Q̄

c i
L ✏�aL↵

L)S
a
3

+ h.c., (11)

where ✏ = i�2, Qc
L = CQ̄T

L, and Sa
3

are the components of the S
3

leptoquark in SU(2)L space. A
model with the same field content was recently proposed in [26] as a possible solution of the B-
physics anomalies. However, the flavour structure postulated in [26] leads to large cancellations
in b ! s⌫⌫̄ and potential tuning also in b ! u charged-current transitions. Contrary to the
vector LQ case, baryon number conservation is not automatically absent in the renormalisable
operators built in terms of S

1,3 and must be imposed as an additional symmetry of the theory.
Integrating out the leptoquark states at tree-level and matching to the e↵ective theory, we

find the following semi-leptonic operators

L
e↵

� � 1

v2
�

C
1

�
1,i��

⇤
1,j↵ � C

3

�
3,i��

⇤
3,j↵

�

(Q̄i
L�µ�

aQj
L)(L̄

↵
L�

µ�aL�
L)

� 1

v2
��C

1

�
1,i��

⇤
1,j↵ � 3C

3

�
3,i��

⇤
3,j↵

�

(Q̄i
L�µQ

j
L)(L̄

↵
L�

µL�
L) ,

(12)

where R
1,3 = v2|g

1,3|2/(4M2

S1,3
) > 0. Enforcing a minimally broken U(2)q ⇥ U(2)` flavour sym-

metry the two mixing matrices �
1,i↵ and �

2,i↵ follow the decomposition presented in Appendix A
and have a hierarchical structure similar to the �i↵ of the vector LQ case. These two flavour ma-
trices are, in general, di↵erent. However, for the sake of simplicity, in the fit we fix �

3,sµ = �
1,sµ

and �
1,bµ = �

3,bµ, keeping only the two s� ⌧ elements di↵erent (since this is required for the fit
to work). The matching of the overall scale with the notation of Eq. (1) is given by

CS = �C
1

� 3C
3

, CT = C
1

� C
3

. (13)

The relation to the various observables used in the fit can be found in Appendix B. The leading
contributions to the flavour observables in Table 1 are

R⌧/`

D(⇤) ⇡ 1 + 2(C
1

� C
3

) + 2(C
1

�
1,s⌧ � C

3

�
3,s⌧ )

Vcs

Vcb
,

�C
9

= ��C
10

=
4⇡

↵VtbVts
C
3

�sµ�bµ ,

Rµ/e
b!c ⇡ 1 + 2(C

1

� C
3

)�bµ

✓

�bµ + �sµ
Vcs

Vcb

◆

,

BK⇤⌫⌫ � 1 / (C
1

�
1,s⌧ + C

3

�
3,s⌧ ) ,

(14)

while the contributions to the radiatively generated ones can be derived simply using Eq. (13).
The results of the fit of semi-leptonic flavour observables, as well as radiatively generated con-
tributions to Z ! ⌧ ⌧̄ , ⌫⌫̄ and ⌧ decays, are illustrated in Figure 6.

A good fit can be obtained for C
1

⇠ C
3

(to pass the limits from ⌧ LFU decays, which
are proportional to CT ), �1,s⌧ ⇠ ��

3,s⌧ ⇠ (few) ⇥ Vcb > 0 (to pass BK⇤⌫⌫̄ and fit RD⇤), and
�sµ�bµ > 0 (to fit �Cµ

9

). In particular, in this limit the leading contributions to BK⇤⌫⌫ and ⌧
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•  GUT	possible	with	light	scalar	LQs	within	SU(5)	if	there	are		2	LQs	
(Doršner,	SF,	Greljo,	Kamenik,	Košnik	1603.04993)	;	
	
•  LQ	S3	,	if	accommodated	within	SU(5)	does	not	cause	proton	decay;	

•  Neutrino	masses	might	be	explained	with	2	light	LQs	within	a	loop	
(Doršner,	SF,	Košnik,	1701.08322);		
•  		
	

SU(5)	GUT	with	(3,3,1/3)	+	(3,2,1/6)	
Doršner,	SF,	Faroughy,		Košnik	

		
Our	proposal										and		S3 R̃2

3

Secondly, ˜R2 can mix with either S1 or S3 through the Higgs boson. In fact, the LQ pairs S1– ˜R�1/3 ⇤
2 or

S1/3
3 – ˜R�1/3 ⇤

2 should mix in order for the mechanism to work. In the latter case the states S�2/3
3 and ˜R2/3 ⇤

2

also mix. The relevant parts of the scalar interactions are

Lscalar � ��1
˜R† a
2 HaS†

1 � �3
˜R† a
2 (⌧kS† k

3 )

abHb

+ h.c., (2)

where �1 and �3 are dimensionful parameters that we take to be real for simplicity. We denote the squared-

masses of the two physical LQs of the 1/3 electric charge with m2
LQ1 and m2

LQ2 regardless of whether

these states originate from the S1– ˜R�1/3 ⇤
2 or S1/3

3 – ˜R�1/3 ⇤
2 combination. The angle that diagonalises 2⇥ 2

squared-mass matrix m2
1 (m2

3) for the S1– ˜R�1/3 ⇤
2 (S1/3

3 – ˜R�1/3 ⇤
2 ) pair is labeled ✓1 (✓3). The squared-mass

matrices m2
1 and m2

3 take the form

m2
1, 3 =

0

@ m2
11 �1, 3hHi

�1, 3hHi m2
22

1

A ,

where hHi represents a vacuum expectation value (VEV) of electrically neutral component of the SM Higgs

field. Here, m2
11 and m2

22 are the squares of would-be masses of S1 and ˜R�1/3 ⇤
2 or S1/3

3 and ˜R�1/3 ⇤
2 if there

was no mixing whatsoever. The angles ✓1 and ✓3 are defined through

tan 2✓1, 3 =
2�1, 3hHi
m2

11 �m2
22

. (3)

The mechanism is very economical since the same scalar field H , upon the electroweak symmetry

breaking, provides masses for the SM charged fermions and introduces a mixing term for the LQs. The

particles that propagate in the loop that generates neutrino Majorana mass(es) are the down-type quarks and

scalar LQs of the matching electric charge. The associated one-loop Feynman diagrams are presented in the

left panel of Fig. 1. The effective neutrino mass matrix in the basis of the physical down-type quarks and

⌫L ⌫Ld

˜R�1/3
2 S1, S

1/3
3

H

ỹRL
2 yLL

1 , yLL
3

�1,�3

⌫L ⌫L

u

R2/3
2 S�2/3

3

H S

yRL
2 �p

2V ⇤
CKMyLL

3



FIG. 1. The one-loop neutrino mass diagrams for the S1, 3– ˜R2 and S3–R2 scenarios in the left and right panels,

respectively. See text for full details.

one-loop	neutrino	mass	mechanism	within	the	framework	of	GUT		
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II. MODEL SETUP

The pair of leptoquarks S3(3̄, 3,�1/3) and R2(3, 2, 1/6), interacts with the SM fermions accordingly to their quan-

tum numbers, given in the brackets. The three charge components of S3, S
4/3
3 , S1/3

3 , and S

�2/3
3 , have the following

Yukawa interactions with fermions [39]

LS3 =� yij d̄
C i
L ⌫

j
LS

1/3
3 �

p
2yij d̄

C i
L e

j
LS

4/3
3 +

+
p
2(V ⇤

y)ij ū
C i
L ⌫

j
LS

�2/3
3 � (V ⇤

y)ij ū
C i
L e

j
LS

1/3
3 + h.c.,

(3)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. Note that S3 has purely left-handed couplings.
The diquark interactions with the leptoquark S3 are not shown in Eq. (3) since we assume that S3 and its interactions
originate from the GUT construction presented in [40] where the B-violating diquark couplings are forbidden due to
the grand unified symmetry.1 Furthermore, having only one leptoquark with mass at the 1 TeV scale would invalidate
unification of couplings, thus a second light state — R̃2 in our case — is needed for theoretical consistency. The two
charges of the R̃2 state, on the other hand, couples only to the down-quarks:

LR̃2
=� ỹij d̄

i
Re

j
LR̃

2/3
2 + ỹij d̄

i
R⌫

j
LR̃

�1/3
2 + h.c.. (4)

Rotation with the CKM matrix V , left over from the transition to the mass basis of fermions has been assigned
to the uL fields. For the study of flavor phenomenology the neutrinos can be safely considered as massless. Thus,
Lagrangians (3) and (4) are written in the fermion mass basis with the exception of ⌫L whose mass basis is ill-defined.
We use flavor basis for the neutrinos, such that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix becomes
unity.

The main goal of our study is to simultaneously address the puzzles observed in neutral current LFU tests in the
RK ratio (and related anomalies in b ! sµ

+
µ

�) as well as in charged-current LFU ratios RD(⇤) . Thus we have clear
target observables that we can a↵ect with only a few leptoquark Yukawas. Drawing the analogy with the study of the
vector LQ in [37] we notice that the state S3 can a↵ect all the target observables with a minimal set of parameters,
ysµ, ybµ, and yb⌧ . In this work also ys⌧ will have to have finite value as we explain in the next Section. The respective
Yukawa couplings of the S3 state with d̄L and ūL are

y =

0

@
0 0 0
0 ysµ ys⌧

0 ybµ yb⌧

1

A
, V

⇤

y =
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0 V
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tbybµ V
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tsys⌧ + V

⇤

tbyb⌧

1

A
. (5)

We will assume that all Yukawa couplings are real, unless stated otherwise. It is evident that the up-type quark
couplings are rotated by V and are thus not confined only to sL and bL.

Yukawas between the doublet leptoquark state R̃2 and dR are assumed to be limited to the ⌧ lepton:

ỹ =

0

@
0 0 0
0 0 ỹs⌧

0 0 ỹb⌧

1

A
. (6)

Both leptoquark masses will be in the ballpark of 1.0 TeV.

III. LFU VIOLATING CONTRIBUTIONS

In this Section we focus on how the two light leptoquarks would a↵ect the LFU observables measured in B meson
decays. The main features and Yukawa textures will be sketched. The detailed discussion of additional observables
and their interplay with the LFU anomalies will be presented in the next Section.

A. Charged currents: RD(⇤)

The largest LFU violating e↵ect is in the charged current observables RD(
⇤). For a new physics-induced e↵ective

operator that follows the chirality structure of the SM it has been shown that the dimensionless coupling of ⇠ 0.1

1 Complete set of S3 and R̃2 couplings to fermions is presented in [39].
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ỹ =

0

@
0 0 0
0 0 ỹs⌧
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ỹ =

0

@
0 0 0
0 0 ỹs⌧
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We will assume that all Yukawa couplings are real, unless stated otherwise. It is evident that the up-type quark
couplings are rotated by V and are thus not confined only to sL and bL.

Yukawas between the doublet leptoquark state R̃2 and dR are assumed to be limited to the ⌧ lepton:
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Both leptoquark masses will be in the ballpark of 1.0 TeV.

III. LFU VIOLATING CONTRIBUTIONS

In this Section we focus on how the two light leptoquarks would a↵ect the LFU observables measured in B meson
decays. The main features and Yukawa textures will be sketched. The detailed discussion of additional observables
and their interplay with the LFU anomalies will be presented in the next Section.

A. Charged currents: RD(⇤)

The largest LFU violating e↵ect is in the charged current observables RD(
⇤). For a new physics-induced e↵ective

operator that follows the chirality structure of the SM it has been shown that the dimensionless coupling of ⇠ 0.1

1 Complete set of S3 and R̃2 couplings to fermions is presented in [39].
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is needed, if new particles have mass of ⇤ = 1 TeV and contribute at tree-level [36]. The matched contributions of
S3 contribute to the left handed operator, whereas R̃2 cannot contribute to charged quark currents. In particular in
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In addition, we have (neutral) lepton flavor violating S3 contributions parameterized by gcb;`k, with their e↵ect being
much smaller since they do not interfere with the SM amplitude. They contribute at subleading order in v
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The RD(⇤) constraint of Eq. (9) includes e↵ects from ⌧ ⌫̄⌧ and µ⌫̄µ states. It is important to notice definite signs of
contributions proportional to Vcb. Thus, sizable yb⌧ is clearly disfavoured by (9) while large ybµ would imply violations
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D(⇤) which are, as will be shown in Section IV, experimentally quite limiting. The remaining possibility

is to pursue a scenario where Cabibbo favored contribution,
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saturates Eq. (9).
Comment on ⌧ polarization measurement.

B. Neutral currents: RK , B ! K(⇤)µ+µ� and related observables

The RK anomaly can be accounted for by the additional contribution of S3 state to the e↵ective four-Fermi operators
that are a product of left-handed quark and lepton currents [39]. The R̃2 state alone can also explain RK via the
quark chirality-flipped four-Fermi operators [41]. Clearly, due to the recent measurement of RK⇤ being significantly
smaller than 1 [CERN Seminar 18th April], the scenario with right handed currents, i.e., R̃2, is disfavoured [25, 41].
If we expand our analysis to a whole family of observables driven by b ! sµ

+
µ

� process the scenario with left-handed
currents, i.e., S3 state, presents a good fit and prefers the following range at 1� [42](see also [43] and updated global
fit in [18]):
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Here v = 246 GeV is the electroweak vacuum expectation value. For a range (11) of Wilson coe�cients we find
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whereas the central value C9 = �C10 = �0.65 of the updated fit [18] corresponds to ybµy
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sµ = 1.0⇥10�3 (mS3/TeV)2.

Contrary to S3, the right-handed quark currents generated by R̃2 do not improve significantly the global agreement
between theory predictions and observables related to the b ! sµ
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�. We have thus considered couplings ỹsµ and
ỹbµ to be negligible.
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Generic features and issues in 2HDMs
Charged Higgs possible as explanation of b ! c⌧⌫ data. . .
However, typically expect �R(D⇤) < �R(D)

Generic feature: Relative influence larger in leptonic decays!

• No problem in b ! c⌧⌫ since B
c

! ⌧⌫ won’t be measured
• Large charm coupling required for R(D⇤)
Embedding b ! c⌧⌫ into a viable model complicated!
D
d ,s ! ⌧, µ⌫ kill typical flavour structures with C

S

L,R
⇠ m

Only fine-tuned models survive all (semi-)leptonic constraints

b ! s`` very complicated to explain with scalar NP
2HDM alone tends to predict b ! s`` to be QCD-related

bb̄ ! (H,A) ! ⌧+⌧� poses a severe constraint [Faroughy+’16, Admir’s talk]
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B ! K(⇤)⌫⌫̄

B0
s � B̄0

s

⌧ ! µ�

⌧ ! K(⇡)µ(e)

K ! µe
For example, if g/2 <∼ g2 <∼ g, one can have λ >∼ Ud

L32
>∼ λ2. In addition, we can

now combine Eqs. (13) and (21). Since C9 is an O(1) number, this implies that
an O(10−1) value for |U l

L32| is still allowed. A more precise measurement of both
RK and B+ → K+νν̄ will put stricter bounds on both the down-type and lepton
mixing-matrix elements.

Finally, the neutral-current part of O(2)
NP also contributes to the decays t → cℓ+ℓ−,

t → cℓ+ℓ′− and t → cνν̄. The branching ratios for these decays are negligible in the
SM, so any observation would be a clear sign of NP. For decays to charged leptons,
the most promising is t → cτ+τ−. In the mass basis, the contributing NP operator is

G
[

Uu∗

L32 U
u
L33 |U ℓ

L33|2 (c̄LγµtL)(τ̄LγµτL) + h.c.
]

, (22)

which gives a partial width of

g42|Uu
L32|2 |Uu

L33|2 |U ℓ
L33|4

16Λ4
NP

m5
t

48π3
. (23)

Taking g2 ∼ g, |Uu
L33| ≃ |U ℓ

L33| ≃ 1, |Uu
L32| ≃ λ, and ΛNP = 800 GeV, this gives

Γ(t → cτ+τ−) = 1× 10−7 GeV . (24)

The full width of the t quark is 2 GeV, so this corresponds to a branching ratio of
5 × 10−8. This is much larger than the SM branching ratio (O(10−16)), but is still
tiny. The branching ratio for t → cνν̄ takes the same value, while those for all other
t → cℓ+ℓ− and t → cℓ+ℓ′− decays are considerably smaller. Thus, while the branching
ratios for these decays can be enormously enhanced compared to the SM, they are
still probably unmeasurable. (This point is also noted in Ref. [11].)

Another process involving t quarks that could potentially reveal the presence of
NP with LFV is pp → tt̄, followed by the radiation of a τ±µ∓ pair. At the LHC
with a 13 TeV center-of-mass energy, gluon fusion dominates the production of tt̄
pairs. We use MadGraph 5 [21] to calculate the cross section for gg → tt̄τ±µ∓,
taking g2 ∼ g. We find σtt̄τµ ≈ 0.4|U ℓ

L32|2 fb. By contrast, the SM cross section for tt̄
pair production is σtt̄ ≈ 450 pb, so that σtt̄τµ/σtt̄ ≈ 10−6|U ℓ

L32|2, which is extremely
small. With a luminosity of 100 fb−1 /year at the 13 TeV LHC [22], we therefore
expect about 40 events/year for gg → tt̄τ±µ∓ if |U ℓ

L32| ∼ 1, or about two events/year
if |U ℓ

L32| ∼ λ. Thus, even though the final-state signal is striking, pp → tt̄τ±µ∓ is
probably unobservable.

Turning to the charged-current interactions, these contribute to both b and t
semileptonic decays. Even with the enhancement from NP, the decay t → bτ ν̄τ will
still be difficult to observe, as it is swamped by the two-body decay t → bW . On
the other hand, the decay b → cτ ν̄i (i = τ, µ, e) is particularly interesting, since
it contributes to the decay B̄ → D(∗)+τ−ν̄τ and the R(D(∗)) puzzle [Eq. (2)], and
provides a aource of lepton flavor non-universality in such decays.

6

(g � 2)µ

µ ! e�

Z ! bb̄

Constraints	from	LFV	

B ! Dµ⌫µ

⌧ ! µµµ
K ! ⇡µ⌫µ

K ! µ⌫µ

B ! Kµe

RK(*)	

RK
e/µ is most sensitive to |ysµ| since the product y⇤bµysµ must be small as dictated by b ! sµµ

sector and comes with an additional CKM suppression. The agreement of experiment [60]
with the SM prediction [62] in the ⌧/µ exhibits a ⇠ 2� tension:

R
K(exp)

⌧/µ = 467.0±6.7, R
K(SM)

⌧/µ =

m3

K(m2

⌧ �m2

K)

2

2m⌧m2

µ(m
2

K �m2

µ)
2

(1+�R⌧/K) = 480.3±1.0, (4.6)

where the dominant error of the experimental ratio is due to the ⌧ lifetime uncertainty,
whereas on the theory side it is the radiative correction �R⌧/K = (0.90± 0.22)% [63] which
is the source of uncertainty. The constraint is expressed as:

R
K(exp)

⌧/µ

R
K(SM)

⌧/µ

�1 =

v2

2m2

S3

Re

⇥

|ysµ|2 � |ys⌧ |2 + (Vub/Vus)(y
⇤
bµysµ � y⇤b⌧ys⌧ )

⇤

= (�2.8±1.4)⇥10

�2.

(4.7)

4.1.3 Leptonic decays: W ! ⌧ ⌫̄, ⌧ ! `⌫̄⌫

The SM tree-level vertex ⌧̄ ⌫W is rescaled due to penguin-like contribution of both S
3

and
˜R
2

. As we integrate out S
3

and ˜R
2

at the weak scale the W vertex with ⌧ leptons reads
�gp
2

⌫̄⌧ /WPL⌧(1 + �
(⌧)
W ), where

�
(⌧)
W =

Nc

288⇡2

⇥

(2x+ 6x log x� 6x⇡i) (|yb⌧ |2 + |ys⌧ |2) + x̃ (|ỹs⌧ |2 + |ỹb⌧ |2)
⇤

,

x =

m2

W

m2

S3

, x̃ =

m2

W

m2

˜R2

.
(4.8)

Free color index in the loops graphs results in the Nc = 3 factor in front. We have neglected
the quark masses in the above calculation and presented only the leading terms in x and
x̃. The contribution of S

3

with mass of 1TeV shifts the W ! ⌧⌫ decay width relatively by
4⇥ 10

�4

(|yb⌧ |2 + |ys⌧ |2) which is well below the current ⇠ 2% experimental precision. The
W ! µ⌫̄ is also rescaled by an analogous �

(µ)
W factor.

At low energies the effective W ! ⌧⌫ vertex would, together with direct box contri-
butions with LQs, manifest in the ⌧ ! `⌫̄`⌫̄⌧ decays. Only S

3

may participate in the box
diagrams since ˜R

2

has no direct couplings to `. The effective interaction term of ⌧ ! `⌫⌧ ⌫̄`
then reads �g2

2m2
W
(⌫̄⌧�µPL⌧)(¯`�

µPL`)[1 + �
(⌧)
W + �

(`)
W + �box⌧`⌫⌫ ], with

�box⌧`⌫⌫ =

Nc

128⇡2

v2

m2

S3

h

(y†y)2`⌧ + 4(y†y)⌧⌧ (y
†y)``

i

. (4.9)

As it has been pointed out recently in the literature [54, 55, 62] the LFU observable R
⌧/`
⌧ ,

defined as a ratio B(⌧ ! `⌫⌫)/B(µ ! e⌫⌫), and normalized to the SM prediction of this
ratio, is very sensitive to models modifying couplings of the ⌧ lepton. Experimentally,
R

⌧/µ
⌧ = 1.0022 ± 0.0030, R⌧/e

⌧ = 1.0060 ± 0.0030, while in the present model the leading
interference terms shift the ratios as

R⌧/e
⌧ = 1 + 2Re

⇣

�
(⌧)
W � �

(µ)
W

⌘

, R⌧/µ
⌧ = 1 + 2Re

⇣

�
(⌧)
W + �box⌧µ⌫⌫

⌘

. (4.10)
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RD(∗)	is	resolved	in	hatched	(2	σ)	and	doubly	hatched	(1	σ)	regions,		
the	b	→	sμμ	puzzle	is	resolved	in	dashed-hatched	region	at	1	σ.	
	Region	below	the	black	line	with	a	hatching	is	in	1	σ	agreement	with	Rμ/e	.		
	

S3	coupled	to	the	muons	only		

4.2.8 D decays

The weak triplet nature of S
3

implies couplings only to the weak doublets of quarks and
leptons, and thus corrections to the charged current processes only rescale the SM charged
current contributions. The dominant modification of Vcs element associated with semi-
muonic decays follows from Eq. (3.2):

Vcs ! Vcs �
v2

4m2

S3

(ysµ + V ⇤
cbybµ)ysµ. (for processes with µ⌫̄µ). (4.25)

Assuming that the CKM-suppressed ybµ term can be neglected in Eq. (4.25) and using the
fact that current precision on the semileptonically determined Vcs reaches 1 per-mille [60],
we find ysµ . 0.3(mS3/TeV).

Rare charm decays with two leptons, e.g. D0 ! µ+µ� and D ! Mµ+µ�, are most
constraining at the moment (for dineutrino modes cf. [78]), where M can be a pseudoscalar
or a vector meson. The effective Wilson coefficient of the left-handed current, C

9

= �C
10

⇡
(Vus⇡v

2

)/(↵VubV
⇤
cbm

2

S3
)y2sµ can be compared to the bounds, |C

9

|, |C
10

| . 1.0/|VubVcb|, ob-
tained in [79]. We learn that the ensuing bound ysµ . 0.5(mS3/TeV) from rare decays is
weaker than the abovementioned bound from semileptonic decays.

5 Flavor couplings

In this section we will study three scenarios differing in the number of variable Yukawas. For
each scenario we report a minimum of �2 function, which is a sum of terms corresponding
to all observables discussed in the preceding sections. We also report 1� regions for the
interesting two-dimensional projections of parameter space. While performing these fits we
limit all free Yukawa couplings to be smaller than 3. Introduction of this artificial cut-off is
guided by the constraints posed by the LHC searches, discussed in Sec. 6. The SM point has
�2

= 71.6 and will serve as a reference value to which �2 of the three fits will be compared.

5.1 S
3

coupled to the muons

In this minimal scenario we consider only the effect of S
3

with non-zero muonic couplings:

y =

0

B

@

0 0 0

0 ysµ 0

0 ybµ 0

1

C

A

. (5.1)

In this case RD(⇤) is addressed by lowering B(B ! D(⇤)µ⌫) which requires large ybµ coupling
as seen in Eq. (3.4) and Fig. 2. We set the mass of the LQ to 1TeV. Left panel in
Fig. 2 exposes tension between RD(⇤) (2.8� pull) and R

µ/e
D(⇤) (1.8� pull) which is even more

exacerbated when we include the direct constraints on ybµ from LHC as can be observed
in right panel of Fig. 2. The latter scenario with all constraints included has �2

= 42.4

which corresponds to the 5.0� pull of the SM hypothesis. However, the results indicate
that RD(⇤) cannot be explained by omitting couplings to ⌧ . Detailed results on the pulls
are given in Tab. 1.
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5.2 S
3

coupled to muons and taus

Since the purely muonic couplings are in conflict with RD(⇤) we allow in addition for tauonic
couplings of S

3

:

y =

0

B

@

0 0 0

0 ysµ ys⌧
0 ybµ yb⌧

1

C

A

. (5.2)

In this case both couplings with the muons tend to be small, below 0.1, and are relevant
only in b ! sµµ, whereas the couplings to ⌧ are ⇠ 1 in order to enhance RD(⇤) . For
mS3 = 1TeV we find that the minimal �2 of this scenario with 4 degrees of freedom is
36.8 which makes the SM point excluded at 5.0� (pull). In Fig. 3 the fit in the tauonic
couplings’ plane shows how the optimal region is still far from the central value of RD(⇤) ,
mostly due to R⌫⌫ and �ms, which do not allow for large products of yb⌧ys⌧ .

mS3 = 1TeV mS3 = 1.5TeV

SM (�2

= 71.6) �2

min

= 36.8 �2

min

= 38.0 Eq.
b ! s`+`� 5.4 0.0 0.0 (3.8)

RD(⇤) 4.5 4.0 4.2 (3.4)
(g � 2)µ 3.1 3.1 3.1 (4.15)
RK

⌧/µ 2.0 0.3 0.3 (4.7)
B(B ! ⌧⌫) 1.2 1.1 1.2 (4.2)

�ms 1.1 1.6 1.6 (4.18)
RK

e/µ 1.1 1.1 1.1 (4.5)
R

µ/e
D(⇤) 0.5 0.5 0.5 (4.1)
R⌫⌫ 0.5 0.8 0.6 (4.23)

bb ! µµ 0.0 0.0 0.0 (4.24)
B(⌧ ! µ�) 0.0 0.4 0.3 (4.11)

R
⌧/e
⌧ 2.0 2.1 2.1 (4.10)

R
⌧/µ
⌧ 0.7 0.8 0.8 (4.10)

B(Z ! ⌧µ) 0.0 0.0 0.0 (4.13)
B(⌧ ! 3µ) 0.0 0.0 0.0 (4.14)

Table 2. Observables that enter the global fit with their pulls in � in the S
3

scenario when ysµ,
ybµ, ys⌧ , and yb⌧ are treated as free parameters.

5.3 S
3

and ˜R
2

, 6 parameters

In order to relax the tension in the ys⌧–yb⌧ plane between large effect in RD(⇤) and well
constrained R

(⇤)
⌫⌫ and �ms, we could invoke a light ˜R

2

with couplings to ⌧ . We consider a
case mS3 = m

˜R2
= 1TeV with six free Yukawa couplings (yij from the previous subsection

and (ỹs⌧ , ỹb⌧ ) pair) to find �2

= 33.4 that represents 4.9� pull away from the SM. Most
importantly, the tension in RD(⇤) is only marginally improved and stands at 3.7�. The
presence of ˜R

2

allows for partial cancellation in �ms between large tauonic couplings of S
3

– 15 –

Fit	to	the	mS3	=	1TeV	scenario	with	four	free	couplings.	RD(∗)	is	resolved	within	
hatched	(2σ)	and	doubly	hatched	(1σ)	regions.	Region	to	the	le�	of	the	dashed	
line	(hatched)	is	in	1σ	agreement	with	Rνν	and	R∗νν.	∆ms	prefers	(at	2σ)	a	region	
on	the	hatched	side	of	full	line.	Red	and	orange	regions	are	1	σ	and	2	σ	results	
of	the	fit.	
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plings taking into account the reported error correlations
and obtain

g

Z⌧L⌧L

g

Z`L`L

= 1.0013± 0.0019 . (25)

The best constraints on the W couplings to taus in our
scenario are obtained from measured tau decay rates
compared to the muon decay rate. Taking into account
the error correlations of measurements of leptonic and
semi-hadronic decays reported in [14], we find

g

W⌧L⌫⌧

g

W `L⌫`

= 1.0007± 0.0013 . (26)

The corresponding constraints on the RPV parameter
space are shown in the plots of Fig. 3 by the white
hatched contours. Parameter space to the top left of
the contours is excluded. We find that in particular the
Z couplings lead to strong constraints in our scenario.

In addition to the constraints shown in the plots,
we also considered the e↵ects of RPV sbottoms on the
rare Kaon decay K ! ⇡⌫⌫, the leptonic charm decays
D ! ⌧⌫ and D

s

! ⌧⌫, as well as the two body exclusive
hadronic tau decays ⌧ ! K⌫ and ⌧ ! ⇡⌫. While these
decays probe in principle complementary combinations of
the �

0
333

, �0
323

, �0
313

couplings, we find that they do not
lead to any relevant additional constraints in the scenar-
ios that we are considering. Also the B

c

lifetime [39, 50]
does not lead to relevant bounds as the contributions
from the RPV sbottoms to B

c

! ⌧⌫ are not chirally en-
hanced with respect to the SM. We also ensure that the
remaining parameter space shown in Fig. 3 is consistent
with other constraints on RPV couplings from various
low-energy precision observables [92].

Overall, we make the following observations: To ex-
plain the R

D

(⇤) anomaly at the 1� level, large values of
�

0
333

⇠ 1�2 are required for sbottom masses that are not
in conflict with direct searches at the LHC. We find that
for such large values of �0

333

at the TeV scale, this cou-
pling develops a Landau pole below the GUT scale. In
the top panel plots of Figure 3, the position of the Landau
pole in GeV is indicated by the dotted blue lines. The
position of the pole is obtained by numerically solving
the coupled system of 1-loop RGEs of the �

0
333

coupling
from [76], the top Yukawa, and the three gauge couplings
in the presence of only one light generation of sfermions.
The position of the pole hardly changes when we include
all three generations of sfermions. Perturbativity up to
the GUT scale requires �

0
333

. 1. Also the Z coupling
constraints limits the possible e↵ects in R

D

(⇤) . In the vi-
able parameter space the R

D

(⇤) anomaly can be partially
resolved.

In Fig. 4 we map the allowed regions of parameter
space into the R

D

vs. R

D

⇤ plane. Note that such a
mapping is possible in our setup because the NP e↵ect is
a simple rescaling of the SM contribution and e�ciencies
remain SM-like. The red regions show the SM predic-
tions at the 1� and 2� level where we have taken R

SM

D

=

FIG. 4. The SM predictions (red), experimental world average
(green), and values accessible in the MSSM with RPV (blue)
in the RD vs. RD⇤ plane. For the SM we take, RSM

D =
0.299± 0.003 [cf. Eq. (3)] and RSM

D⇤ = 0.257± 0.005; see text
for details.

0.299± 0.003 [cf. Eq. (3)] and R

SM

D

⇤ = 0.257± 0.005 with
an error correlation of +0.44. For RSM

D

⇤ we take the cen-
tral value from the most recent prediction in [15] but the
error to be the full spread between this central value and
a previous determination from [16]. The green regions
correspond to the experimental world average from [14]
at the 1�, 2�, and 3� level. The blue region which spans
R

D

= (0.272, 0.347) and R

D

⇤ = (0.229, 0.305) indicates
values that can be obtained in our setup taking into ac-
count all mentioned indirect constraints and constraints
from direct searches. To obtain this region we scan the
sbottom mass between the lower experimental bound of
m

˜

b

> 680 GeV up to m

˜

b

< 1 TeV. The RPV couplings
are varied in the ranges 0 < �

0
333

< 2, �0.1 < �

0
333

< 0.1,
and �0.3 < �

0
313

< 0.3. We impose all the low energy
constraints discussed above. The blue points correspond
to RPV couplings that remain perturbative up to the
GUT scale. Relaxing this requirement and allowing the
�

0
333

coupling to develop a Landau pole before the GUT
scale does not lead to larger e↵ects in R

D

(⇤) , given the
constraints from Z couplings.

DISCUSSION

We note that the same RPV couplings that generate
the desired e↵ects in R

D

(⇤) also generate a neutrino mass
at 1-loop level through bottom-sbottom loop [93]:

M

⌫,ij

' 3

8⇡2

m

2

b

(A
b

� µ tan�)

m

2

˜

b

�

0
i33

�

0
j33

(27)

For m

˜

b

= 1 TeV and �

0
333

= 0.9, we get M

⌫

⇠ 0.1 MeV
which is too large. However, one could invoke cancella-
tions either between tree and loop-level contributions or
exploit the flavor structure of the RPV couplings to get
the sub-eV scale neutrino mass, which we assume to be
the case. Another possibility is to allow the �

ijk

L

i

L

j

E

c

k

terms in the RPV Lagrangian to further facilitate the

the	3rd	genera>on	of	sfermions	to	be	light	
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FIG. 3. RPV parameter space satisfying the RD(⇤) anomaly and other relevant constraints.

top quark mass. All other Z and W couplings are not
a↵ected significantly. We find

g

Z⌧L⌧L

g

Z`L`L

= 1� 3(�0
333

)2

16⇡2

1

1� 2s2
W

m

2

t

m

2

˜

bR

f

Z

 
m

2

t

m

2

˜

bR

!
,(23)

g

W⌧L⌫⌧

g

W `L⌫`

= 1� 3(�0
333

)2

16⇡2

1

4

m

2

t

m

2

˜

bR

f

W

 
m

2

t

m

2

˜

bR

!
, (24)

where ` = e, µ, s
W

is the sine of the weak mixing angle,
and the loop functions are given by f

Z

(x) = 1

x�1

� log(x)

(x�1)

2 ,

f

W

(x) = 1

x�1

� (2�x) log(x)

(x�1)

2 . In the leading log aprroxima-
tion, the above expressions are consistent with the results
in [89, 90]. The Z couplings to leptons have been mea-
sured at the few permille level at LEP and SLD. Using
the results from [91], we profile over the una↵ected cou-
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FIG. 3. RPV parameter space satisfying the RD(⇤) anomaly and other relevant constraints.

top quark mass. All other Z and W couplings are not
a↵ected significantly. We find
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where ` = e, µ, s
W

is the sine of the weak mixing angle,
and the loop functions are given by f

Z

(x) = 1

x�1

� log(x)

(x�1)

2 ,

f

W

(x) = 1

x�1

� (2�x) log(x)

(x�1)

2 . In the leading log aprroxima-
tion, the above expressions are consistent with the results
in [89, 90]. The Z couplings to leptons have been mea-
sured at the few permille level at LEP and SLD. Using
the results from [91], we profile over the una↵ected cou-
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FIG. 2. RG evolution of the gauge couplings in the SM,
MSSM and in our natural RPV SUSY scenario.

close to the TeV scale. The radiative correction to the
Higgs mass dominantly coming from the top-quark loop
in the SM is canceled by the light stop contribution. The
first two generation sfermions can be thought of being
decoupled from the low-energy spectrum as in [74, 75].
As argued in Ref. [74], RPV arises naturally in this setup.

Despite the minimality of this setup, one of the key fea-
tures of SUSY, namely, gauge coupling unification is still
preserved, as shown in Fig. 2. Here we show the renor-
malization group (RG) evolution of the inverse of the
gauge coupling strengths ↵

�1

i

= 4⇡/g2
i

(with i = 1, 2, 3
for the SU(3)

c

, SU(2)
L

and U(1)
Y

gauge groups, where
the hypercharge gauge coupling is in SU(5) normaliza-
tion) in the SM (dotted) and the full MSSM with all
SUSY partners at the TeV scale (dashed), and the RPV
SUSY scenario with only third generation fermions su-
persymmetrized at the TeV scale (solid).6 We find it
intriguing that the gauge coupling unification in SUSY
occurs regardless of whether only one, two or all three
fermion generations are supersymmetrized at low scale,
which only shifts the unified coupling value, but not the
unification scale. The main reason is that the �-functions
receive the dominant contributions from the gaugino and
Higgsino sector, so as long as they are not too heavy, the
coupling unification feature is preserved, even in presence
of RPV.

In supersymmetric theories, the Higgs mass parame-
ter is related to the various sparticle masses. Requir-
ing the absence of fine-tuned cancellations generically

6 The RG evolution in the SM and the MSSM is performed at the
2-loop level. In the RPV SUSY scenario we solve the RG equa-
tions consistently at 1-loop using the results from [76]. At higher
loop level, the decoupled first and second generation squarks
would require a refined analysis [77], which is beyond the scope
of our work, but our qualitative conclusions concerning gauge
coupling unification are una↵ected. The impact of the RPV in-
teractions on the running gauge couplings is small as long as the
RPV couplings do not develop a Landau pole.

leads to upper bounds on sparticle masses. In partic-
ular, the Higgsino should not be heavier than a few
hundred GeV, the stop masses should be well below a
TeV and also the gluino mass should not be far above
a TeV [75, 78]. Bounds on other sparticle masses are
considerably weaker. Nevertheless, also first and second
generation masses are constrained by fine-tuning consid-
erations, as their two-loop contributions to the Higgs and
Z mass become important. A natural spectrum with less
than 10% of tuning should have first and second genera-
tion squarks not too far above ⇠ 10 TeV [79]. Allowing
for tuning at the level of 10�2 or even 10�4, the bounds
can be relaxed substantially. Thus, from the phenomeno-
logical point of view, we can decouple the first and second
generation from the collider and flavor physics aspects
being considered here.

B-ANOMALIES AND CONSTRAINTS

To explain the R

D

(⇤) anomaly in the minimal RPV
SUSY setup, we only consider the �

0
ijk
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RPV in-

teractions (see [47, 52, 80] for related studies).7 Expand-
ing it in terms of fermions and sfermions, we get
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Working in the mass eigenbasis for the down-type quarks
and assuming that sfermions are in their mass eigen-
states, we obtain the following four-fermion operators
at the tree-level after integrating out the sparticles (see
also [52])

L
e↵

� �

0
ijk

�

0⇤
mnk

2m2

˜

dkR


⌫̄

mL

�

µ

⌫

iL

d̄

nL

�

µ

d

jL

+ ē
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, (9)

where we only show the terms relevant for the following
discussion. Note that these operators are of type O

VL in

7 We do not consider additional contribution to RD(⇤) from
charged Higgs exchange. Those contributions are small if the
second Higgs doublet of the MSSM is heavy or if tan �, the ratio
of the two Higgs vacuum expectation values, is small. Even if we
include this contribution, which involves the scalar operator (6)
in the 4-fermion language, the model-independent collider signal
discussed in the previous section provides a way to distinguish
it from the squark contribution, which involves a vector opera-
tor (5), as explicitly shown in Eq. (9).
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among SM-like and vector-like fermions, the couplings to the leptoquark result become flavour non-universal, whereas the
couplings to the other gauge bosons (in particular the one associated to B � L) remain flavour diagonal.

As stated above, we do not explicitly specify the UV
completion of the Higgs sector responsible for the EW
symmetry breaking but rather use the decoupling theo-
rem asserting that there is one light SU(2)

L

doublet with
vev v giving rise to the chiral fermion and weak gauge bo-
son masses. We can now write down the usual Yukawa
couplings and diagonalize the resulting 3 ⇥ 3 matrices
using biunitary transformations
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with q = u, d and the corresponding expression for right-
handed fields. For our final results, only the misalign-
ment between left-handed quark and leptons
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as well as the CKM matrix V CKM
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= UuL⇤
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UdL

ji

are impor-
tant. Note that in the following, we work in the down ba-
sis, i.e. CKM rotations are only present once left-handed
up-quarks are involved. We neglect Higgs couplings in-
volving chiral and vector-like fermions in our phenomeno-
logical analysis.
In analogy to the SU(2)
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sector, we embedded the
fermions charged under SU(2)
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in the following repre-
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and the above discussion about masses and mixing can
be replicated for the RH fermions of the SM.

B. Couplings of fermions to gauge bosons

After SU(4) symmetry breaking, its 15 generators cor-
respond to 8 massless gluons, 6 leptoquarks (V µ + V̄ µ),
and one B � L gauge boson. As we can see from Fig. 1,
after mixing of q (`) with Q (L) the couplings of the
B �L gauge boson remains flavour universal, as a result
of the unitarity of the mixing matrices, with strength
g
s

/
p
6 (�3g

s

/
p
6) for quarks (leptons). Since we do not

completely specify the Higgs sector (a possible realization
will be given in the Outlook), we take the masses of the
B � L gauge boson and the leptoqaurks as free parame-
ters. The masses should be of the same order, but due to
the strong constraints from Z 0 searches, we assume that
the B � L gauge boson is heavier (around a factor of 2)
than the leptoquarks.

Let us now consider the couplings of the vector-
leptoquark V µ. Here, the rotations in Eq. (6) induced
by the mixing between vector-like and SM fermions do
not drop out, as it is apparent from Fig. 1. In addition,
after EW symmetry breaking, the misalignment between
the rotations needed to diagonalize the light quark and
lepton mass matrices U q`L

fi

, cf. Eq. (8), enters in the cou-
pling of V µ with the SM fermion doublets:
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Considering for illustration only the second and third generations, which are of interest for our phenomenological
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Here sq`23, c
q`

23 are the rotations induced by the misalign-
ment between the SM Yukawa couplings of quarks and
leptons, encoded in Eq. (8). Recall that we assumed that
the first generation quarks and leptons do not mix. This
ensures that our model is consistent with the bounds from
K

L

! µe and K ! ⇡µe for TeV scale masses.
Similarly, couplings of V µ to right-handed leptons and

quarks might arise as an e↵ect of the mixing with the
vector-like fermions in the SU(2)

R

sector, i.e. the field
embedding in Eq. (9). Such couplings should be small
(but not necessarily zero) due to the observed patterns
in R(D(⇤)) and b ! sµ+µ� transitions. In our setup,
this can be easily achieved by a mild suppression the
SM-like/vector-like fermion mixing in the RH sector.

III. OBSERVABLES

A. R(D) and R(D⇤)
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where in the SM Cfi
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and the contribution of our
vector leptoquark is given by
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leading to
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where we neglected contributions with muon or electron
neutrinos. This has to be compared to the experimental
measurements of R(D⇤)EXP = 0.304± 0.013± 0.007 and
R(D)EXP = 0.407±0.039±0.024, and the corresponding
SM predictions, R(D⇤)SM = 0.252±0.003 and R(D)SM =
0.300± 0.008 [44, 45].
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at the 2(1)� level. In the case of lepton flavour violat-
ing B decays, we use the the results of Ref. [46] for the
analysis of B ! K(⇤)⌧µ which currently gives the best
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using unitary gauge. Here s, t = 1 � 6 labels the six
fermions with the quantum numbers of charged leptons.
Note that after summation over the internal leptons the
result is finite due to the GIM-like cancellation originat-
ing from our unitary rotation matrices in Eqs. (6, 8). The
standard loop functions D

x

⌘ D
x

(M
LQ

,M
LQ

,m
s

,m
t

)
are defined as

16⇡2

i

D
x

�
m2

1,m
2
2,m

2
3,m

2
4

�
= (22)

R
d

d

k

(2⇡)d
(k2)x/2

(k2�m

2
1)(k2�m

2
2)(k2�m

2
3)(k2�m

2
4)

4

study, we find

L � 
ij

q̄L
i

�µP
L

`L
j

V
µ

+ h.c. with 
ij

=
�g

sp
2

0

BB@

cQ1 s
L

1 + cL1 s
Q

1 0 0

0
⇣
cQ2 s

L

2 + cL2 s
Q

2

⌘
cq`23 �sq`23

⇣
cQ2 s

L

2 + cL2 s
Q

2

⌘

0
⇣
cQ2 s

L

2 + cL2 s
Q

2

⌘
sq`12 cq`23

⇣
cQ3 s

L

3 + cL3 s
Q

3

⌘

1

CCA

ij

. (11)
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ment between the SM Yukawa couplings of quarks and
leptons, encoded in Eq. (8). Recall that we assumed that
the first generation quarks and leptons do not mix. This
ensures that our model is consistent with the bounds from
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FIG. 2: Left: Allowed regions from R(D(⇤)) for MLQ = 1.5TeV and sQ3 = sL3 = 1/
p
2. Here we used the weighted average for

R(D) and R(D⇤). The contour lines denote Br(Bs ! ⌧+⌧�)⇥ 104. Right: Combined results for R(D(⇤)) and b ! s`+`�, and
contours for [Br(B ! K⌧+µ�) + Br(B ! K⌧�µ+)]/2. The red region is preferred by the global fit to b ! s`+`� data.

IV. PHENOMENOLOGICAL ANALYSIS

Let us first consider R(D) and R(D⇤) where the least
number of free parameters enters. In order to get a
sizable e↵ect, the mixing of LL

3 with the tau lepton
`L3 should be large. Assuming it to be maximal (i.e.
ML

33 = mL

33), we show the regions preferred by R(D(⇤))
in the left plot of Fig. 2 for M

LQ

= 1.5TeV. From this we

can see that also the mixing between QL

3 and qL3 (sQ3 ), as
well as the misalignment between the quark and lepton
Yukawa couplings of the second and third generations
(sq`23) should be sizable. Our model predicts a signifi-
cant enhancement of B

s

! ⌧+⌧� compared to the SM
prediction since this process is in our setup mediated at
tree-level with order one couplings.

Let us now turn to the explanation of b ! s`+`�

data. Assuming the absence of mixing with leptons of the
first generation, we are safe from processes like µ ! e�
or b ! sµe [53] and get the right e↵ect in R(K) and
R(K⇤). Assuming maximal mixing for the third gener-
ation quarks and leptons, we show the preferred region
from b ! s`+`� in the right plot of Fig. 2. This region
overlaps with the one from R(D(⇤)) for small mixing be-
tween the second generation fermions (sQ,L

2 ) where the
predicted branching ratio for B ! K⌧µ is automatically
compatible with the experimental bounds. However, the
predicted rate is still sizable and well within the reach of
future measurements.

So far, we did not specify the absolute mass scale of
the vector-like fermions since it did not enter any of the
observables. However, for B

s

�B
s

mixing, the masses of
the vector-like leptons are crucial. In fact, since we cal-
culated B

s

� B
s

mixing in unitary gauge, the e↵ects of
Goldstone bosons are automatically included and there-

fore the result scales proportional to (ML)2 (like the SM
contribution is proportional to m2

t

). Thus, in order to re-
spect the B

s

�B
s

mixing bounds while still accounting for
R(D(⇤)), rather light vector-like leptons are required. We
checked that the B

s

�B
s

mixing bounds are respected for
masses around 500GeV. Since these are third generation
leptons, this is compatible with the bounds from direct
LHC searches [54, 55]. Anyway, since we only included
the e↵ect of the Goldstone bosons and not of physical
Higgses in this calculation, this should only be under-
stood as a proof that B

s

� B
s

mixing does not rule out
large e↵ects in R(D(⇤)). A more precise prediction would
require to specify the Higgs sector explicitly and would
be therefore subject to more model dependence.

V. CONCLUSIONS AND OUTLOOK

In this article we presented a renormalizable phe-
nomenologically valid TeV scale model of a vector lepto-
quarks with flavour dependent couplings. The model is
an extension of the PS model obtained by adding three
generations of vector like-fermions which are in funda-
mental representations of SU(4). Our model can suc-
cessfully address the observed deviations from the SM
predictions in semi-leptonic B decays (R(D(⇤)) as well
as in b ! s`+`� transitions) and easily account for the
anomaly in the AMM of the muon too, as we discuss
below. An explanation of R(D(⇤)) predicts a significant
enhancement of B

s

! ⌧+⌧� and once also b ! s`+`� is
included, sizable rates for b ! ⌧µ processes must occur.
Also bounds from B

s

� B
s

mixing are respected for not
too heavy vector-like leptons.

KL	→	μe	and	K	→	πμe	in	PS	model:	strong	constraints	on	the	scale	PeV;		
they	make	scale	teV	possible!	

Mixing	among	SM-like	and	vector-
like	fermions,	the	leptoquark	
couplings	to	flavour	are		non-
universal.		
Couplings	to	the	other	gauge	
bosons	(specially	B	−	L)		
remain	flavour	diagonal.	

Rate	for	Bs	→	τ+τ−		significantly	enhanced.		
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Figure 1: Leading order Feynman diagrams for t-channel pp ! ⌧+⌧� production at the LHC mediated
by both third-generation LQs.

1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S

3

and R̃
2

contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...

1.1 High-mass ⌧⌧ production

Each leptoquark component contributes to pp ! ⌧+⌧� via qq̄ annihilation (q = s, c, b) in a t-channel

exchange of S4/3
3

, S1/3
3

and R̃2/3
2

as depicted in Fig.1. First we calculate the leading-order (LO)
fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
pT (⌧) > 150 GeV (50 GeV) for the leading (sub-leading) ⌧ -lepton and an invariant mass cut for the
⌧⌧ pair of m⌧⌧ > 300 GeV. The fiducial cross-section is decomposed in the following way:
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where ↵ ⌘ ys⌧yb⌧ and ↵̃ ⌘ ỹs⌧ ỹb⌧ . In order to keep the analysis simple we assume all Yukawa couplings
to be real and the CKM matrix to be V ⇡ 1. Here �(1), �(2) and �(3) correspond to the fiducial cross-
sections of the processes ss̄ (cc̄) ! ⌧+⌧� (Fig.1 a,c), sb̄ (s̄b) ! ⌧+⌧� (Fig.1 b) and bb̄ ! ⌧+⌧� (Fig.1
a), respectively. These can be expressed as the following quartic polynomials in the couplings:
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As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
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1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
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implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
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ỹ2s⌧

⌘

=
↵4

y4s⌧
A(3)

1

+
↵̃4
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Here, the coe�cients A(j)
i =A(j)

i (mS3 ,mR2) are functions of the two leptoquark masses. Notice that
we have parametrized �fid

pp!⌧⌧ with the set (ys⌧ , ỹs⌧ ,↵, ↵̃) because the products ↵ and ↵̃ of the cou-
plings (and not the individual couplings) are more sensitive to the B-anomalies and low energy flavor

1
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Figure 1: Diagramatic representation of s�channel (left-
hand side) and t�channel (right-hand side) resonance ex-
hange (drawn in blue double see-saw lines) contributions to
bb̄ ! ⌧+⌧� process.

III. MODELS

The di↵erent chiral structures being probed by R(D(⇤))
single out a handful of simplified single mediator mod-
els [22]. In the following we consider the representative
cases, where we extend the SM by a single field trans-
forming non-trivially under the SM gauge group.

Color singlet Color triplet

Scalar 2HDM Scalar LQ

Vector W 0 Vector LQ

Table I: A set of simplified models generating b ! c⌧⌫ tran-
sition at tree level, classified according to the mediator spin
and color.

First categorization of single mediators is by color.
While colorless intermediate states can only contribute
to b ! c⌧⌫ transitions in the s ⌘ (pb�pc)2-channel, col-
ored ones can be exchanged in the t ⌘ (pb � p⌧ )2- or
u ⌘ (pb � p⌫)2-channels. The colorless fields thus need
to appear in non-trivial SU(2)L multiplets (doublets or
triplets) where the charged state mediating semileptonic
charged currents is accompanied by one or more neu-
tral states mediating neutral currents. Such models thus
predict ŝ ⌘ (p⌧+ + p⌧�)2-channel resonances in ⌧+⌧�

production (see the left-hand side diagram in Fig. 1). In
addition to the relevant heavy quark and tau-lepton cou-
plings, searches based on the on-shell production of these
resonances depend crucially on the assumed width of the
resonance, as we demonstrate below in Sec. IV. Alter-
natively, colored mediators (leptoquarks) can be SU(2)L
singlets, doublets or triplets, carrying baryon and lep-
ton numbers. Consequently they will again mediate
⌧+⌧� production, this time through t̂ ⌘ (pb � p⌧�)2- or
û ⌘ (pb�p⌧+)2-channel exchange (see the right-hand side
diagram in Fig. 1). In this case a resonant enhancement
of the high-pT signal is absent, however, the searches do
not (crucially) depend on the assumed width (or equiva-
lently possible other decay channels) of the mediators. In
the following we examine the representative models for
both cases summarized in Table I.

A. Vector triplet

A color-neutral real SU(2)L triplet of massive vectors
W 0a ⇠ W 0±, Z 0 can be coupled to the SM fermions via

LW 0 = �1

4
W 0aµ⌫W 0a

µ⌫ +
M2

W 0

2
W 0aµW 0a

µ + W 0a
µ Jaµ

W 0 ,

Jaµ
W 0 ⌘ �q

ijQ̄i�
µ�aQj + �`

ijL̄i�
µ�aLj . (4)

Since the largest e↵ects should involve B-mesons and tau

leptons we assume �
q(`)
ij ' gb(⌧)�i3�j3, consistent with an

U(2) flavor symmetry [15]. Departures from this limit
in the quark sector are constrained by low energy flavor
data, including meson mixing, rare B decays, LFU and
LFV in ⌧ decays and neutrino physics, a detail analysis of
which has been performed in Ref. [15].2 The main impli-
cation is that the LHC phenomenology of heavy vectors
is predominantly determined by their couplings to the
third generation fermions (gb and g⌧ ). The main con-
straint on gb comes from its contribution to CP violation
in D0 mixing yielding gb/MW 0 < 2.2 TeV�1 [25]. On the
other hand lepton flavor mixing e↵ects induced by finite
neutrino masses can be neglected and thus a single lepton
flavor combination written above su�ces without loss of
generality.

In addition, electroweak precision data require W 0 and
Z 0 components of W 0a to be degenerate up to O(%) [26],
with two important implications: (1) it allows to cor-
relate NP in charged currents at low energies and neu-
tral resonance searches at high-pT ; (2) the robust LEP
bounds on pair production of charged bosons decaying to
⌧⌫ final states [27] can be used to constrain the Z 0 mass
from below MZ0 ' MW 0 & 100 GeV. Finally, W 0a cou-

pling to the Higgs current (W 0
aH

†�a
$
Dµ H) needs to be

suppressed [15], and thus irrelevant for the phenomeno-
logical discussions at LHC.

Integrating out heavy W 0a at tree level, generates the
four-fermion operator,

Le↵

W 0 = � 1

2M2

W 0
Jaµ
W 0J

aµ
W 0 , (5)

and after expanding SU(2)L indices,

Le↵
W 0 � �

�q
ij�

`
kl

M2
W 0

(Q̄i�µ�
aQj)(L̄k�

µ�aLl)

� �
gbg⌧

M2
W 0

�
2Vcbc̄L�

µbL⌧̄L�µ⌫L + b̄L�
µbL⌧̄L�µ⌧L

�
. (6)

The resolution of the R(D(⇤)) anomaly requires cQQLL ⌘
�gbg⌧/M

2

W 0 ' �(2.1 ± 0.5) TeV�2, leading at the same

2 Also, Ref. [24] considers leading RGE e↵ects to correlate large
NP contributions in cQQLL with observable LFU violations and
FCNCs in the charged lepton sector. The resulting bounds can
be (partially) relaxed in this model via direct tree level W 0 con-
tributions to the purely leptonic observables.
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Figure 5: ATLAS (13 TeV, 3.2 fb�1) ⌧⌧ search [37] exclusion
limits on bb̄ ! H0 ! ⌧⌧ resonances. The preferred value from
the fit to the R(D(⇤)) anomaly is YbY

⇤
⌧ ⇥v2/M2

H+ = (2.9±0.8).

optimized as we are forced to use a certain fixed number
of bins and their sizes and cannot leverage the full control
of experimental systematics.

3. 2HDM exclusion limits

The cross-sections for A,H0 production from bb̄ an-
nihilation can be estimated at NNLO in QCD using the
Higgs cross-section WG results [45]. While the results are
directly applicable for the CP even state H0, we expect
them to hold as a good approximation also for a heavy
CP-odd A0 due to the restoration of chiral symmetry
when mb/mH0 ⌧ 1 . We have checked explicitly that
di↵erences between scalar and pseudoscalar production
are negligible up to NLO [46] for the interesting mass
region mA0,H0 & 200 GeV. In setting bounds, we there-
fore rescale the LO simulation results to the Higgs cross-
section WG production cross-sections [45] taken at the
lower factorization, renormalization and 68% CL PDF
uncertainty ranges.

Conservatively considering only a single neutral scalar

Figure 6: (Upper plot) 8 TeV [36] (13 TeV [37]) ATLAS
⌧+⌧� search exclusion limits are shown in red (black) and
R(D(⇤)) preferred region in green for the vector leptoquark
model. Projected 13 TeV limits for 300 fb�1 are shown in
grey. (Lower plot) the same search exclusion limits for the
scalar leptoquark model.

resonance contribution (denoted by H 0 meaning either
A0 or H0), we show the resulting 95% CL upper lim-
its on the |YbY⌧ | ⇥ v2/M2

H0 (evaluated at the b-quark
mass scale µR ' 4.3 GeV) after recasting the ATLAS
13 TeV [37] ⌧+⌧� search in Fig. 5. We observe that
even after accounting for the possible O(100 GeV) mass
splitting between the charged and the lightest neutral
state within the scalar H 0 doublet, the R(D(⇤)) preferred
value YbY

⇤
⌧ ⇥ v2/M2

H+ = (2.9± 0.8) cannot be reconciled
with existing ⌧+⌧� resonance searches at the LHC in the
mA,H0 & 200 GeV region.6

6 In case of H0 = H0 (with A0 decoupled), small departures from
the 2HDM alignment limit (i.e. non-zero h � H0 mixing), con-
sistent with existing experimental constraints, in particular on
h ! ⌧+⌧�, bb̄ [47] (see e.g. [48]), can further mildly alleviate
the bound due to somewhat reduced e↵ective Yb,⌧ couplings of

2HDM	cannot	reconcile	ττ	searches	at	LHC		
for		
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1 Collider constrains

As shown in ??, direct LHC searches for ⌧⌧ resonances can produce stringent bounds on NP
models for the RD(⇤) anomaly. These models will generate neutral currents with large couplings to
third generation fermions that enhance bb̄ ! ⌧+⌧� production at the LHC. With enough integrated
luminosity, the limits from ⌧⌧ searches are sensitive to couplings of order O(1) in the 1 TeV region. In
the leptoquark model proposed here, the fact that both S
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contribute to low-energy processes
implies smaller b� ⌧ Yukawa couplings to each leptoquark. These smaller Yukawas could potentially
evade direct search limits from ?? (the same mechanism has been employed in ??). Nevertheless,
fitting the low-energy anomalies and flavor constrains leeds to non-negligeable s� ⌧ couplings to both
leptoquarks. This will generate a large enhancement of ss̄ ! ⌧+⌧� production at the LHC. Given
that the PDF of the strange quark is enhanced in comparison to the bottom quark by a factor of ⇠ 3,
it is important to reinterpret the limits derived in ?? when both leptoquarks with sizeable s� ⌧ and
b� ⌧ couplings are included. In the following we confront the leptoquark model to existing 13 TeV Z 0

resonance searches in the high-mass tails of inclusive ⌧⌧ production. Besides ⌧⌧ resonance searches,
we have also analyzed direct searches exclusive for third generation leptoquarks, namely leptoquark
pair production from QCD interactions.

Discuss about other constrains such as di-muons and pair production of leptoquarks of second-gen...
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as depicted in Fig.1. First we calculate the leading-order (LO)
fiducial cross-section of pp ! ⌧+⌧� in the leptoquark model defined by the following high-mass cuts:
pT (⌧) > 150 GeV (50 GeV) for the leading (sub-leading) ⌧ -lepton and an invariant mass cut for the
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2

s⌧ ) + �(2)(↵, ↵̃) + �(3)

⇣ ↵2

y2s⌧
,
↵̃2
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2

s⌧ A
(1)

3

(2)

�(2)(↵, ↵̃) = ↵2A(2)

1

+ ↵̃2A(2)

2

+ ↵↵̃A(2)

3

(3)

�(3)

⇣ ↵2

y2s⌧
,
↵̃2
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Fixing	these	couplings	one	can	get	full	total	cross-sec>on.		
The	MC	samples	generated	in	MadGraph	were	subsequently		
hadronized	and	showered	in	Pythia6		
	

Allowed	95%	CL	regions	of	
parameter	space	for	LHC	
luminosites	of	30,	100,	200	and	
300	�−1	projected	from	the	
high-mass	ττ	resonance	search	
by	ATLAS.	
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Summary	

Ø  Effec>ve	Lagrangian	for	NP	for	B	anomalies		well	established;		

Ø  RD(*)		explana>on	by	NP	very	intriguing,	due	to	strong	flavour		constraints;		
		
Ø  Constraints		from			LHC	high	pT	searches	important;	

Ø  Simple	models	of	one	NP	par>cle	present	in	all	B	anomalies		prefer	weak	singlet		
vector	LQ;	
	
Ø  More	sophis>cated	GUT	models	are	already	constructed!	

	



Thanks!	
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mLQ	plane	



Recent	update	on	SM	value	of	RD(*)	

Bigi,	Gambino,	Schacht	1707.09509		

“Luke’s	theorem	does	not	protect	the	form	factors	from	1/m2	correc>ons,	it	
is	therefore	natural	to	expect	1/m2	correc>ons	of	order	10-20%,	and	one	
cannot	exclude	that	occasionally	they	can	be	even	larger”.	
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Fj Aj Bj Cj Dj

S1 1.0208 �0.0436 0.0201 �0.0105

S2 1.0208 �0.0749 �0.0846 0.0418

S3 1.0208 0.0710 �0.1903 0.0947

P1 1.2089 �0.2164 0.0026 �0.0007

P2 0.8938 �0.0949 0.0034 �0.0009

P3 1.0544 �0.2490 0.0030 �0.0008

V1 1 0 0 0

V2 1.0894 �0.2251 0.0000 0.0000

V3 1.1777 �0.2651 0.0000 0.0000

V4 1.2351 �0.1492 �0.0012 0.0003

V5 1.0399 �0.0440 �0.0014 0.0004

V6 1.5808 �0.1835 �0.0009 0.0003

V7 1.3856 �0.1821 �0.0011 0.0003

A1 0.9656 �0.0704 �0.0580 0.0276

A2 0.9656 �0.0280 �0.0074 0.0023

A3 0.9656 �0.0629 �0.0969 0.0470

A4 0.9656 �0.0009 �0.1475 0.0723

A5 0.9656 0.3488 �0.2944 0.1456

A6 0.9656 �0.2548 0.0978 �0.0504

A7 0.9656 �0.0528 �0.0942 0.0455

TABLE II. Coe�cients of the expansion in powers of (w� 1)
of Fj/V1, see Eq. (6).

lations between their results. We also mention that
there is some tension between the preliminary value of
A1(1) = 0.857(41) by HPQCD and the result of Fermi-
lab/MILC, A1(1) = 0.906(13). Incidentally we note that
the first value agrees well with the heavy quark sum rule
estimate of Ref. [25]. The results at or near zero recoil
are

S1(1) = 1.027(8)� 1.156(38)(w � 1) + . . .

V1(1) = 1.053(8)� 1.250(35)(w � 1) + . . . , (10)

A1(1) = 0.902(12) ,

from which it follows that

S1(w)

V1(w)

���
LQCD

= 0.975(4) + 0.056(39)(w � 1) + . . . ,

A1(1)

V1(1)

���
LQCD

= 0.857(14), (11)

S1(1)

A1(1)

���
LQCD

= 1.139(19).

Notice that in the case of S1/V1 both numerator and de-
nominator have been computed at small recoil by the Fer-
milab/MILC and HPQCD collaborations, and we there-
fore have also a lattice determination of the slope of the
ratio.

On the other hand, the HQET calculation at NLO of

Ref. [19] gives

S1(w)

V1(w)

����
HQET

= 1.021(30)� 0.044(64)(w � 1) + . . .

A1(1)

V1(1)

����
HQET

= 0.966(28) (12)

S1(1)

A1(1)

���
HQET

= 1.055(2),

where the errors represent only the parametric uncer-
tainty on mb, ↵s and the QCD sum rules parameters.
Comparing the zero-recoil values of the ratios in

Eqs.(11) to those in Eqs. (12) one observes deviations be-
tween 5% and 13%, which are obviously due to higher or-
der corrections unaccounted for in Eq. (12). In all cases
the deviation is larger than the NLO correction. While it
is quite possible that lattice uncertainties are somewhat
underestimated, here we are not interested in a precision
determination. What matters here is that the size of
these deviations is consistent with our discussion above.
The slope of the ratio S1/V1 computed on the lattice
has a di↵erent sign from the one in (12) and their di↵er-
ence induces a 6% shift at maximal w. However, since
S1/V1 = 1 at maximal recoil, it is not surprising that
higher order corrections are moderate in this case.
In conclusion, higher order corrections to the form fac-

tor ratios computed in HQET at NLO are generally size-
able and can naturally be of the order of 10-20%.

III. STRONG UNITARITY BOUNDS FOR
B ! D⇤ FORM FACTORS

In the following we refer to the setup based on [13]
which we have employed in [14] to perform a fit to the
recent Belle B ! D⇤`⌫ di↵erential distributions. In this
framework the generic form factor Fi (already in CLN
notation) can be expressed as

Fi(w) =
pi(w)

Bi(z)�i(z)

NX

n=0

a(i)n zn (13)

where z = (
p
w + 1�

p
2)/(

p
w + 1 +

p
2) and the pref-

actors pi(w) are the ratios between helicity amplitudes
in the CLN and BGL notations which can be read o↵
Table I. The series in z in (13) is truncated at power N
and we will set N = 2 from the outset, which is su�-
cient at the present of level accuracy as 0 < z < 0.056 in
the physical region for semileptonic B ! D⇤ decays to
massless leptons.
The Blaschke factors, Bi(z), take into account the sub-

threshold Bc resonances with the same quantum numbers
as the current involved in the definition of Fi. As the ex-
act location of the threshold (mB(⇤) + mD(⇤))2 depends
on the particular B(⇤) ! D(⇤) channel, Bi(z) may dif-
fer even between form factors with the same quantum
numbers. We will employ the resonances given in Table
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the physical region for semileptonic B ! D⇤ decays to
massless leptons.
The Blaschke factors, Bi(z), take into account the sub-

threshold Bc resonances with the same quantum numbers
as the current involved in the definition of Fi. As the ex-
act location of the threshold (mB(⇤) + mD(⇤))2 depends
on the particular B(⇤) ! D(⇤) channel, Bi(z) may dif-
fer even between form factors with the same quantum
numbers. We will employ the resonances given in Table

approach	now	includes	HQET	constraints	with	realis>c	uncertain>es	and	
improves	on	the	CLN	parametriza>on	in	several	ways.	



There	are	11	observables.	Most	promising	to	trace	NP			

1.	Differen>al	decay	distribu>on		

2.	Forward-backward	asymmetry	

3.	Lepton	polariza>on	asymmetry	

4.	Par>al		decay	rate	according	to	the	polariza>on	of	D*	

2. Forward-Backward asymmetry:

AD⇤

FB(q
2) =

Z
1

0

d2�

dq2d cos ✓`
d cos ✓` �

Z
0

�1

d2�

dq2d cos ✓`
d cos ✓`

d�/dq2
=

b✓`(q
2)

d�/dq2

=
G2

F |Vcb|2|q|q2
128⇡3m2

B(d�/dq
2)

✓
1� m2

`

q2

◆
2

⇥

|H

+

|2 � |H�|2 + 2
m2

`

q2
Re[H

0

H⇤
t ]

�
. (41)

3. Lepton-polarization asymmetry: We define the di↵erential decay rates, d�±/dq2, with

the spin of the charged lepton projected along the z-axis and with �` = ±1/2. In other

words,

d��

dq2
(B ! D⇤`⌫`) =

G2

F |Vcb|2|q|q2
96⇡3m2

B

✓
1� m2

`

q2

◆
2

⇥ �|H
+

|2 + |H�|2 + |H
0

|2� ,

d�+

dq2
(B ! D⇤`⌫`) =

G2

F |Vcb|2|q|q2
96⇡3m2

B

✓
1� m2

`

q2

◆
2

m2

`

2q2
⇥ �|H

+

|2 + |H�|2 + |H
0

|2 + 3|Ht|2
�
,

(42)

and the lepton polarization asymmetry reads,

AD⇤

�`
(q2) =

d��/dq2 � d�+/dq2

d�/dq2
= 1� 2

d�+/dq2

d�/dq2
. (43)

4. Partial decay rate according to the polarization of D⇤: Splitting the decay rate accord-

ing to the polarization of the D⇤-meson amounts to,

d�L

dq2
=

2

3

⇥
a✓D(q

2) + c✓D(q
2)
⇤
,

d�T

dq2
=

4

3
a✓D(q

2), (44)

where the functions on the r.h.s. are given in eq. (33). One of these components is

independent, while the other can be obtained from � = �L + �T . To cancel the CKM and

kinematic factors we can define

RL,T =
d�L/dq

2

d�T/dq
2

=
|H

0

|2 + 3|Ht|2 [1� 1/(1 +m2

`/2q
2)]

|H
+

|2 + |H�|2 . (45)

5. A
5

: We see that three of the above observables involve the squares of the absolute values

of four helicity amplitudes, |H
+,�,0,t|2. We can build the fourth observable as follows. After

integrating in �, we consider

�(q2, ✓D) =

Z
0

�1

d3�

dq2d cos ✓Dd cos ✓`
d cos ✓` �

Z
1

0

d3�

dq2d cos ✓Dd cos ✓`
d cos ✓`, (46)

and then integrate in ✓D as,

A
5

(q2) =

"
7

Z
1/2

�1/2

�
Z

1

1/2

�
Z �1/2

�1

#
�(q2, ✓D) d cos ✓D

d�/dq2

= � 9G2

F |Vcb|2|q|q2
256⇡3m2

B(d�/dq
2)

✓
1� m2

`

q2

◆
2


|H

+

|2 � |H�|2
�
. (47)
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3 Illustration of numerical sensitivity to physics BSM

in the quark sector

In order to numerically illustrate the sensitivity of observables defined in the previous

Section to the presence of physics BSM, we proceed as follows:

– We use the e↵ective Hamiltonian (1), which amounts to replacing the helicity ampli-

tudes by the explicit expressions given in eq. (28).

– We use the experimental results for RD = B(B ! D⌧⌫⌧ )/B(B ! Dµ⌫µ) as obtained

by BaBar and Belle, and RD⇤ = B(B ! D⇤⌧⌫⌧ )/B(B ! D⇤µ⌫µ) measured at BaBar,

Belle and LHCb, and combine them with the form factors computed in Ref. [20]. We

use that latter reference because it contains the full list of form factors needed for

this study. 8

– After switching on the NP couplings, one at the time, we compare theory with exper-

iment and find the range of allowed values for gi ⌘ gV,A,S,P,T,T5

6= 0. Since we allow

the couplings to be complex, we can choose them to be either fully real, or with a

significant imaginary part, and then examine each of the 2+10 observables discussed

in this paper, to check on their sensitivity with respect to gi 6= 0. 9

3.1 Allowed values of gV,A,S,P,T

We now illustrate the allowed values of the NP couplings gV,S,T obtained from RD, and

gV,A,P,T from RD⇤ . Furthermore we will assume that NP a↵ects the B ! D(⇤)⌧⌫⌧ decay

only. After switching on one coupling at the time we obtain the plots shown in Fig. 3. The

best fit values obtained in this way are:

gV = 0.21� i 0.76, gA = �0.18� i 0.05,

gS = �0.92� i 0.38, gP = 0.91 + i 0.38, gT = �0.42 + i 0.15, (55)

and are labeled by red stars in Fig. 3. We reiterate that in the notation of eq. (1) the

couplings gS,P,T are dimensionful and are given in GeV�1. To illustrate the e↵ect of gi 6= 0

on the observables discussed in the previous Section, we examine them in the case of

B ! D(⇤)⌧⌫⌧ for four di↵erent values of gi: the SM ones (gi = 0), the best fit values given

above, and for the extreme case of gi 6= 0 allowed from the fits, as shown in Fig. 3. The

scale in gS,P,T (µ) is implicit and is chosen to be µ = mb.

8 Obviously, for a more viable theoretical description one should use the form factors obtained through
numerical simulations of QCD on the lattice. However, since the full set of form factors obtained on the
lattice is not available, and since the purpose of this work is to point out the usefulness of the above
observables in searching for the e↵ects of NP, we will satisfy ourselves by the form factors of Ref. [20].

9Notice that the di↵erential decay rates are used as input (through RD(⇤)), which is why instead of 3+11
observables for B ! D`⌫` and B ! D⇤`⌫`, we consider the sensitivity of 2+10 observables on gi 6= 0.
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semileptonic processes. The combination of the above observables would help understand-

ing the Lorentz structure of the NP contributions (if any), their size. More specifically,

three of them can be used as a check of the presence of additional NP phase(s).

Quantity gV gA gS gP gT

AD
FB ⇥ – ? ? ? – ?

AD
�⌧

⇥ – ? ? ? – ??

AD⇤
FB ? ? ? ? – ? ? ? ?

AD⇤
�⌧

⇥ ⇥ – ?? ?

RL,T ⇥ ⇥ – ?? ??

A
5

?? ?? – ? ? ? ?

C� ? ⇥ – ?? ??

S� ? ? ? ? ? ? – ⇥ ? ? ?

A
8

?? ?? – ?? ? ? ?

A
9

? ? – ?? ??

A
10

?? ?? – ⇥ ??

A
11

⇥ ⇥ – ?? ??

Table 1: Sensitivity to gi 6= 0: ⇥ stands for “not sensitive”, and ? ? ? for “maximally sensitive”.

4 Summary

In this paper we provided the general expressions for the full angular distribution of the

semileptonic decays of a pseudoscalar meson to a daughter pseudoscalar or vector meson.

From these formulas, apart from the di↵erential decay widths, we were able to construct

2 (10) observables when considering the decay to a pseudoscalar (vector) meson. High

luminosity experimental facilities are likely to allow us to measure the detailed angular

distribution of these decays and the resulting observables discussed in this paper can be

used for searching the e↵ects of physics BSM at low energies.

We focused on the case of B̄ ! D(⇤)⌧ ⌫̄⌧ to illustrate the benefits of the observables

discussed in this paper. In particular, three observables [S�(q2), A8

(q2) and A
10

(q2)] are

sensitive to the NP phase(s). Other quantities we discussed here can be used to disentangle

the Lorentz structure of the NP contributions (V , A, S, P or T ) and perhaps to deduce
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×	stands	for	“not	sensi>ve”,	
	and	⋆	⋆	⋆	for	“maximally		
sensi>ve”	

“Anatomy”	of	angular		
distribu>ons	observables	


