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CKM Factors in Kaon physics
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Contributions to ε’/ε
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s d
W+

Z,     γ, g 

t, c, u
Z-Penguin and Boxes (high virtuality):
power expansion in: Ac - Au ∝ 0 + O(mc2/MW2)

γ/g-Penguin (momentum expansion + e.o.m.):
power expansion in: Ac - Au ∝ O(Log(mc2/mu2))

In the K → π π decay for ε’/ε both contribute 
with opposite signs

Need good theory control that relies on both perturbative 
and non-perturbative (Lattice QCD) methods

Using the GIM mechanism, we can 
eliminate: Vus* Vud → - Vcs* Vcd - Vts* Vtd



New Physics Sensitivity
While the cancellation requires good theory control: 

Additional QCD suppression in SM leads to 
    increased NP sensitivity 
(better Z-Penguin if compared to non-oblique LEP and
 potentially Bs → μ+ μ-  for Minimal Flavour Violation)

Additional CP violation suppression (λ4) increases 
sensitivity to new sources of Flavour Violation.

ε’/ε severely restrict the parameter space of new physics.

But we have to work hard to interpret deviations from the 
Standard Model.
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Schrödinger type equation for meson mixing

K Meson Mixing

M12 from ∆s = 2 Box ⟷ Electroweak process

Γ12  ⟷ ∆Γ maximal and ∆I = 1/2 saturates Γ12  = A0 A̅0
6
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ε’/ε : Interference of mixing and decay



CP violation in Kaons
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✏0 = (⌘+� � ⌘00)/3✏K = (⌘00 + 2⌘+�)/3

CP violation in mixing, interference & decay → non-zero

Only CP violation in mixing (Re ε), interference of mixing and 
decay (Im ε, Im ε‘) and direct CP violation (Re ε‘)

✏0 ⇡ 1
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Formula for ε‘/ε 
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a0, a2 & a2+ from experiment
[Cirigliano,  et.al. `11]

 a0 & a2: isospin amplitudes
for isospin conservation
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Formula for ε‘/ε 
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AI = h(⇡⇡)I |He↵ |KiCurrent theory gives us only:

Normalise to K+ decay (ω+, a) and εK ,
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Formula for ε‘/ε 
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penguins in Im A0 [Cirigliano,  et.al. `11]



Study Unitarity & CKM Elements to get Im AI & Re AI

Current-Current & CKM
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We use unitarity to eliminate

Current-current interactions: 
Two contributions if μ > mc.

(∝ Vts* Vtd and ∝ Vus* Vud)

For μ < mc: Vts* Vtd is absent:
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Penguin & CKM

10

{V ⇤
usVudf(mu) + V ⇤

csVcdf(mc) + V ⇤
tsVtdf(mt)}QPenguin !

{V ⇤
usVud [f(mu)� f(mc)] + V ⇤

tsVtd [f(mt)� f(mc)]}QPenguin

s dt, c, uPenguins: f(mu) - f(mc) = 0:
Only Vts* Vtd contribution



Penguin & CKM
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{V ⇤
usVudf(mu) + V ⇤

csVcdf(mc) + V ⇤
tsVtdf(mt)}QPenguin !

{V ⇤
usVud [f(mu)� f(mc)] + V ⇤

tsVtd [f(mt)� f(mc)]}QPenguin

μ > mc: Vts* Vtd Qc1/2 mixes into  Vts* Vtd QPenguin (like usual).

μ > mc: Vus* Vud (Qu1/2 – Qc1/2) does not mix into QPenguin .

μ < mc: Match Vts* Vtd Qc1/2  onto Vts* Vtd QPenguin 
              → CP violation from QPenguin

                    → CP conserving from Qu1/2  (plus small QPenguin)

s dt, c, uPenguins: f(mu) - f(mc) = 0:
Only Vts* Vtd contribution



Effective Hamiltonian 
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Currently we use the effective Hamiltonian below the charm: 

He↵ =
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Effective Hamiltonian 

11

Currently we use the effective Hamiltonian below the charm: 

He↵ =
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV ⇤

ts

VudV ⇤
us

Q1,2/± = (s̄iuj)V�A (ūkdl)V�A

Q3,...,6 = (s̄idj)V�A

X

q=u,d,s

(q̄kql)V±A

Q7,...,10 = (s̄idj)V�A

X

q=u,d,s

eq(q̄kql)V±A

current-current
QCD &

electroweak
penguins

We have zi & yi at NLO [Buras et.al., Ciuchini et. al. `92 `93]

And now also a Lattice QCD calculation of: ⟨(ππ)I|Qi|K⟩=⟨Qi⟩I 
by RBC-UKQCD [Blum et. al., Bai et. al. `15]



Operator Relations
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3-Flavour Fierz identities: 

Q4  = Q3 + Q2 - Q1

Q9  = 3/2 Q1 - Q3

Q10  = Q2 + Q1 - Q3

Q1,2/± = (s̄iuj)V�A (ūkdl)V�A

Q3,...,6 = (s̄idj)V�A

X

q=u,d,s

(q̄kql)V±A

Q7,...,10 = (s̄idj)V�A

X

q=u,d,s

eq(q̄kql)V±A

Isospin Symmetry: 

<Q3>2  = <Q4>2 = 0

All matrix elements 
<Q1>2, <Q2>2, <Q9>2, <Q10>2 
are proportional.



A2 only contributes in the ratio Im A2/Re A2

Im A2/Re A2 – (V-A)x(V-A)

13

2 Basic formulae 6

Electroweak Penguins:

Q
7

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V+A Q
8

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V+A (13)

Q
9

=
3

2
(s̄d)V�A

X

q=u,d,s,c,b

eq (q̄q)V�A Q
10

=
3

2
(s̄↵d�)V�A

X

q=u,d,s,c,b

eq (q̄�q↵)V�A (14)

Here, ↵, � denote colour indices and eq denotes the electric quark charges reflecting the
electroweak origin of Q

7

, . . . , Q
10

. Finally, (s̄d)V�A ⌘ s̄↵�µ(1� �
5

)d↵.
The Wilson coe�cients zi and yi have been calculated at the NLO level more than

twenty years ago [10,11], and some pieces of NNLO corrections are also available [12–14].
In Table 1, we collect values for z

1,2 and yi at µ = mc, used in our approach, for three
values of ↵s(MZ) and mt = 163GeV, in the NDR-MS scheme.

↵s(MZ) = 0.1179 ↵s(MZ) = 0.1185 ↵s(MZ) = 0.1191
z
1

–0.4036 –0.4092 –0.4150
z
2

1.2084 1.2120 1.2157
y
3

0.0275 0.0280 0.0285
y
4

–0.0555 –0.0563 –0.0571
y
5

0.0054 0.0052 0.0050
y
6

–0.0849 –0.0867 –0.0887
y
7

/↵ –0.0404 –0.0403 –0.0402
y
8

/↵ 0.1207 0.1234 0.1261
y
9

/↵ –1.3936 –1.3981 –1.4027
y
10

/↵ 0.4997 0.5071 0.5146

Table 1: �S = 1 Wilson coe�cients at µ = mc = 1.3GeV for three values of ↵s(MZ) and
mt = 163GeV in the NDR-MS scheme.

2.2 Basic formula for "0/"

Our starting expression is formula (8.16) of [29] which we recall here in our notation1

"0

"
= � !

+p
2 |"K |


ImA

0

ReA
0

(1� ⌦
e↵

)� ImA
2

ReA
2

�
, (15)

where [29]

!
+

= a
ReA

2

ReA
0

= (4.53± 0.02)⇥ 10�2, a = 1.017, ⌦
e↵

= (6.0± 7.7)⇥ 10�2 . (16)

Here a and ⌦
e↵

summarise isospin breaking corrections and include strong isospin violation
(mu 6= md), the correction to the isospin limit coming from �I = 5/2 transitions and

1In order to simplify the notation we denote Re("0/") simply by "0/", which is real to an excellent
approximation. The latter is a model-independent consequence of the experimentally known values of
the (strong) phases of "0 and ".

Isospin limit: 2 <Q9>2 = 2 <Q10>2 = 3 <Q1>2 = 3 <Q2>2

Re A2: (z1+z2)<Q1+Q2>2 = z+<Q+>2     Im A2: y9<Q9>2 + y10<Q10>2

2 Basic formulae 5

It should be stressed that assuming dominance of SM dynamics in CP-conserving data,
our determination of the contributions of (V �A)⌦ (V �A) operators to "0/" is basically
independent of the non-perturbative approach used. The RBC-UKQCD lattice collab-
oration calculates these contributions directly and we will indeed identify a significant
di↵erence between their estimate of the Q

4

contribution to "0/" and ours.
Our paper is organised as follows. In Section 2, we derive the analytic formula for "0/"

in question using the strategy of [10] but improving on it. Using this formula, we present

a new analysis of "0/" within the SM exhibiting its sensitivity to the precise value of B(1/2)
6

and the weak dependence on q. In Section 3, we perform the anatomy of uncertainties
a↵ecting "0/" and present the prediction of "0/" in the SM, including a discussion of

its B
(1/2)
6

dependence. In Section 4, we extract from the lattice-QCD results of [25] the
values of the most important hadronic matrix elements and compare them with ours. This
allows us to identify the main origin of the di↵erence between (5) and (6). In particular,
we point out an approximate correlation between the contribution of the Q

4

operator
to "0/" and the value of ReA

0

valid in any non-perturbative approach. In Section 5,
we investigate if thus far neglected SM contributions could bring our result for "0/" into
agreement with the experimental findings. A brief general discussion of the impact of
possible NP contributions to ReA

0,2 and ImA
0,2 and of the implications of our results for

NP models is given in Section 6. The summary of our observations and an outlook are
presented in Section 7. In Appendix A, we discuss the sub-leading contributions to our
prediction for "0/" and in Appendix B, for completeness, an updated analytic formula for
"0/" in the SM is presented in the form used in several of our papers in the past (e.g. [21])
that is equivalent to the one derived in Section 2, but exhibits the mt, ↵s, ms and md

dependences more explicitly.

2 Basic formulae

2.1 E↵ective Hamiltonian

We use the e↵ective Hamiltonian for �S = 1 transitions of [6–11]

H
e↵

=
GFp
2
VudV

⇤
us

10X

i=1

�
zi(µ) + ⌧ yi(µ)

�
Qi(µ) , ⌧ ⌘ � VtdV

⇤
ts

VudV ⇤
us

. (9)

The contributing operators are given as follows:
Current–Current:

Q
1

= (s̄↵u�)V�A (ū�d↵)V�A Q
2

= (s̄u)V�A (ūd)V�A (10)

QCD–Penguins:

Q
3

= (s̄d)V�A

X

q=u,d,s,c,b

(q̄q)V�A Q
4

= (s̄↵d�)V�A

X

q=u,d,s,c,b

(q̄�q↵)V�A (11)

Q
5

= (s̄d)V�A

X

q=u,d,s,c,b

(q̄q)V+A Q
6

= (s̄↵d�)V�A

X

q=u,d,s,c,b

(q̄�q↵)V+A (12)

Let us first consider only (V-A)x(V-A) operators:

✓
ImA2

ReA2

◆

V�A

= Im⌧
3(y9 + y10)

2z+
, ⌧ =

V ⇤
tsVtd

V ⇤
usVud



More operators contribute to Im A0/Re A0

Im A0/Re A0 – (V-A)x(V-A)

14

ReA0 =
GFp
2
VudV

⇤
us

�
z+hQ+i0 + z�hQ�i0

�
, ReA2 =

GFp
2
VudV

⇤
us z+hQ+i2

Expression with p3 = ⟨Q3⟩0/⟨Q4⟩0  and EW penguins given in
[Buras, MG, Jäger & Jamin `15]

Fierz relations for (V-A)x(V-A) give, e.g.: ⟨Q4⟩0=⟨Q3⟩0+2⟨Q–⟩0
✓
ImA0

ReA0

◆

V�A

= Im⌧
2y4

(1 + q)z�
+O(p3)

Is only a function of Wilson coefficients and of the ratio   

q = (z+(µ)hQ+(µ)i0)/(z�(µ)hQ�(µ)i0)



Q6 & Q8 give the leading contribution to
ImA0 & ImA2 respectively

(V-A)x(V+A) Contributions
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2 Basic formulae 9

which reduces the number of independent (V � A) ⌦ (V � A) matrix elements entering
ReA

0,2 and ImA
0,2 to three. On the other hand, to an excellent approximation the am-

plitudes ReA
0

and ReA
2

at µ = mc are fully described by the operators Q� and Q
+

, so
that we can write

ReA
0

=
GFp
2
VudV

⇤
us

�
z
+

hQ
+

i
0

+ z�hQ�i0
�
, (33)

ReA
2

=
GFp
2
VudV

⇤
us z+hQ+

i
2

. (34)

Introducing the ratio

q ⌘ z
+

(µ)hQ
+

(µ)i
0

z�(µ)hQ�(µ)i0
, z± = z

2

± z
1

, (35)

allows us to express the ratios involving only (V �A)⌦ (V �A) operators that will enter
our basic formula for "0/" as follows:

✓
ImA

0

ReA
0

◆

V�A

= Im⌧
[4y

4

� b(3y
9

� y
10

)]

2(1 + q)z�
+ Im⌧ b

3q(y
9

+ y
10

)

2(1 + q)z
+

, (36)

✓
ImA

2

ReA
2

◆

V�A

= Im⌧
3(y

9

+ y
10

)

2z
+

. (37)

Besides the CKM ratio ⌧ , the first ratio depends only on Wilson coe�cients and the single
hadronic ratio q to which we will return below. On the other hand the second ratio is free
from hadronic uncertainties, being fully determined by the Wilson coe�cients z

+

, y
9

, y
10

and by ⌧ .
The remaining contributions to ImA

0

and ImA
2

are due to (V �A)⌦(V +A) operators
and are dominated by the operators Q

6

and Q
8

, respectively. We find this time
✓
ImA

0

ReA
0

◆

6

= � GFp
2
Im�t y6

hQ
6

i
0

ReA
0

, (38)

✓
ImA

2

ReA
2

◆

8

= � GFp
2
Im�t y

e↵

8

hQ
8

i
2

ReA
2

. (39)

Contributions from Q
3

and Q
5

are very suppressed but can and have been included in
our numerical error estimate. (See Appendix A.) We have also taken into account the
small e↵ect of hQ

7

i
2

, for which a relatively precise lattice prediction exists [23], through
the substitution

y
8

! ye↵
8

⌘ y
8

+ p
72

y
7

(40)

which is included in writing (39). Here p
72

⌘ hQ
7

i
2

/hQ
8

i
2

= 0.222 for central values
of [23]. (In our numerics, we have added the corresponding errors linearly and attribute
a 15% uncertainty to this contribution.)

The matrix elements of the Q
6

and Q
8

operators are conveniently parameterised by

hQ
6

(µ)i
0

= � 4h


m2

K

ms(µ) +md(µ)

�
2

(FK � F⇡)B
(1/2)
6

, (41)

hQ
8

(µ)i
2

=
p
2h


m2

K

ms(µ) +md(µ)

�
2

F⇡ B
(3/2)
8

, (42)

Here: Take Re A0  from data

One can re-express <Q6>0  & <Q8>2 in terms of B6 & B8



Prediction for ε‘/ε
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"0

"
= 10�4


Im�t

1.4 · 10�4

�h
a
�
1� ⌦̂e↵

��
� 4.1(8) + 24.7B(1/2)

6

�
+ 1.2(1)� 10.4B(3/2)

8

i

I=2 Similarly for (V-A)x(V-A):
I=0 (V-A)x(V-A)

(V-A)x(V+A) Matrix elements B6=0.57(19) and B8=0.76(5) 
from Lattice QCD [Blum et. al., Bai et. al. `15]

I=2 (V-A)x(V-A)

✓
✏0

✏

◆

SM

= 1.9(4.5)⇥ 10�4

✓
✏0

✏

◆

exp

= 16.6(2.3)⇥ 10�4

2.9 σ difference

3 Prediction for "0/" in the SM 14

the precision on mt increased by much in the last two decades. a
(3/2)
0

contributes
positively to "0/".

iv) The contribution of the (V �A)⌦(V +A) electroweak penguin operators Q
7

and Q
8

to P (3/2) is represented by the second term in (55). This contribution is dominated
by Q

8

and depends sensitively on mt and ↵s. It contributes negatively to "0/".

The competition between these four contributions is the reason why it is di�cult to
predict "0/" precisely. In this context, one should appreciate the virtue of our approach:
the contributions i) and iii) can be determined rather precisely by CP-conserving data so
that the dominant uncertainty in our approach in predicting "0/" resides in the values of

B
(1/2)
6

and B
(3/2)
8

.

3 Prediction for "0/" in the SM

3.1 Prediction for "0/" and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-
ters within their input ranges and combining the resulting variations in "0/" in quadrature,
we obtain:

("0/")
SM

= (1.9± 4.5)⇥ 10�4. (61)

Comparing to the experimental result ("0/")
exp

= (16.6±2.3)⇥10�4 (average of NA48 [26]
and KTeV [27,28]), we observe a discrepancy of 2.9 � significance.

quantity error on "0/" quantity error on "0/"

B
(1/2)
6

4.1 md(mc) 0.2
NNLO 1.6 q 0.2

⌦̂
e↵

0.7 B
(1/2)
8

0.1
p
3

0.6 Im�t 0.1

B
(3/2)
8

0.5 p
72

0.1
p
5

0.4 p
70

0.1
ms(mc) 0.3 ↵s(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows
the variation from the central value of our "0/" prediction, in units of 10�4, as the cor-
responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated
by the hadronic parameter B

(1/2)
6

. Uncertainties from higher-order corrections are still
significant yet small if compared to the deviation from the experimental value. All other
individual errors are below 10�4, with the third most important uncertainty coming from
the isospin breaking parameter ⌦̂

e↵

, at a level of 0.7 ⇥ 10�4 and about six times smaller
than the error due to B

(1/2)
6

.

Similar findings
 [Kitahara, Nierste, Tremper 1607.06727] 



NLO vs NNLO
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Theory prediction only at NLO at the moment

Convergence at mc is not clear – should calculate next 
order

Long term use Lattice QCD

Also the error estimate does not include O(p2/mc2) 
corrections which for K → π π are expected to be small



Status of ε’/ε NNLO
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Energy Fields Order

μW
g,γ,W,Z,h,
u,d,s,c,b,t

NNLO Q1-Q6 & Q8g i)
NNLO EW Penguins (traditional Basis) ii)

RGE γ,g,u,d,s,c,b NNLO Q1-Q6 & Q8g iii)

μb γ,g,u,d,s,c,b NNLO Q1-Q6 iv)

RGE γ,g,u,d,s,c NNLO Q1-Q6 & Q8g iii)

μc γ,g,u,d,s,c NLO Q1-Q10 v)

RGE γ,g,u,d,s NNLO Q1-Q6 & Q8g iii)

MLattice g,u,d,s NLO Q1-Q10 (traditional Basis) vi)
i)  [Misiak, Bobeth, Urban]
ii) [Gambino,Buras, Haisch]
iii)[Gorbahn, Haisch]

iv)[Gorbahn, Brod]
v) [Buras, Jamin, Lautenbacher]
vi)[Blum et. al., Bai et. al. ‘15]



Factorisation
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RG-invariant factorisation
Traditional the contribution of running (U(µ,µ0)) and
matching (M(µ)) are combined as:

h~Qi(3)(µL)~C(3)(µL) = h~Qi(µL)U(3)(µL,µc)M(34)(µc)U(4)(µc,µb)

M(45)(µb)U(5)(µb,µW)~C(5)(µW)

Alternatively we can also factorise as

h~Qi(3)(µL)~C(3)(µ) = h~Qi(µL)
(3)u(3)(µL)

u(3)-1
(µc)M(34)(µc)u(4)(µc)

u(4)-1
(µb)M(45)(µb)u(5)(µb)

u(5)-1
(µW)~C(5)(µW)

or write in terms of scheme and scale independent
quantities:

h~Qi(3)(µL)~C(3)(µ) = h~̂Qi(3)M̂(34)M̂(45)~̂C(5)

3 / 3



Schemes
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The Matrix elements <Qi>0/2RI-SMOM are evaluated on the 
Lattice and renormalised in the RI-SMOM scheme.

The RI-SMOM renormalisation conditions (off-shell four 
point functions) make loop calculations very difficult.

Scheme change to MSbar known only at NLO 
[Sturm, Lehner `11]

<Qi>(μL) = [T(0) + αs(μL)  T (1)(μL)]ij <Qj>RI-SMOM 

At least expect good convergence (at least in the case of 
the three-point function used for mass renormalisation 
at NNLO [Gorbahn, Jäger `10] [Alemeda, Sturm `10])



RGI Scheme
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Step scaling
Using the MS matrix elements h~Qi(µL) and evolution
u(µL) we have, e.g. in the three-flavour theory

h~Qi(3)(µL)u(3)(µL) = h~̂Qi(3)

or alternatively in terms of RI-SMOM parameters

h~Qi(3)
RI-SMOM(µL)u

(3)
RI-SMOM(µL) = h~̂Qi(3) ,

which would still be di�cult.
But when µ ! 1 we are less sensitive to the loop
correction

u(3)
RI-SMOM(µ) =

✓
1 +

↵s(µ)

4⇡
J(1) + . . .

◆
u(3)

0 (µ) !
✓
↵s(µ)

4⇡

◆-�T
0

2�0

Still the RGI objects might also be useful for the numerical
evaluation:

5 / 6



RG-invariant factorisation

All hatted quantities h~̂Qi(3), M̂(34), M̂(45) and ~̂C(5) and also
their products

~̂C(3) = M̂(34)M̂(45)~̂C(5)

are formally scheme and scale independent.

The matrix elements h~̂Qi satisfy d = 4 Fierz identities.

~̂C(3) is µ independent, but shows residual µ dependence.

Plot this for the ŷ(µc) (the ones / Im(V⇤
tsVtd)):

4 / 4

RGI Numerics
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and for ẑ(μc) (relevant for Re A0 and Re A2)
Use different RGE running (numerical or via ΛMS) 

from αs(MZ) at LO, NLO & NNLO
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LO

NLO

NNLO
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LO
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0.61
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0.64

mc@GeVD

z̀ +

The Real Part of A0 & A2

is dominated by z+ & z-

The residual μc dependence 
reduces order by order

At NLO there is still a 
dependence on the 
implementation of αs 

Running.

αs dependence in the
RI-SMOM → MSbar change

ReA2 =ẑ+hQ̂+i2
ReA0 =ẑ+hQ̂+i0 + ẑ�hQ̂�i0
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LO

NLO

NNLO
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êRe

A 0

Transform Lattice RISMOM
matrix elements to q ̂ scheme

Re A0 = 33.2 × 10-8 GeV
Re A2 = 1.48 × 10-8 GeV 

Lattice input to Re A0 has still
20% / 25% stat / sys. uncertainty
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LO

NLO

NNLO
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QCD Penguin scale uncertainty is reduced from NLO to NNLO
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LO

NLO

NNLO
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e'êe
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4

Plot residual μc dependence of the QCD contribution to ε’/ε
Uncertainty is significantly reduced by going to NNLO
There are still improvements: 
e.g. better αs implementation & better incorporation of 
subleading corrections – will not change the overall picture



Conclusions
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Using Recent Lattice results and proper combination 
of results → tension in ε’/ε

Previous determination relied only on NLO calculation

NNLO analysis show that theory prediction 
for QCD Penguins in ε’/ε is under very good control.

Small shift in the Re A0 & Re A2.

Extend to EW penguins & Need further input from 
Lattice QCD.



NNLO Operator Basis
The traditional basis requires the calculation of traces with 𝛄5 .

 Issues with the treatment 
of the 𝛄5 in D dimensions 

Higher order calculations can be significantly simplified 
if we use a different  operator basis.

c

Q2

c

s

b

!

g

g

g
b s s s

c

c
g

!

Q2

g

g

q q q

b s

c

c
!

Q2

g
g g

q q q

b s

cc
g

!

Q2

g g

Figure 5: Some of the three-loop 1PI diagrams we had to calculate in order to find the
mixing among the four-quark operators Q1–Q6 at O(α3

s).

The finite parts of Eq. (33) in the limit of ϵ going to zero give the anomalous dimensions.
Inserting the expansions of γ̂(g) and β(g) in powers of g, as given in Eq. (5), one im-
mediately finds [15, 18] for the anomalous dimensions governing the evolution of physical
operators up to third order in the strong coupling parameter:

γ̂(0) = 2Ẑ(1,1) ,

γ̂(1) = 4Ẑ(2,1) − 2Ẑ(1,1)Ẑ(1,0) ,

γ̂(2) = 6Ẑ(3,1) − 4Ẑ(2,1)Ẑ(1,0) − 2Ẑ(1,1)Ẑ(2,0) .

(35)

The matrices Ẑ(1,0), Ẑ(1,1), Ẑ(2,0) and Ẑ(2,1) are found by calculating various one- and
two-loop diagrams with a single insertion of Q1–Q6, E(1)

1 –E(1)
4 and E(2)

1 –E(2)
4 , whereas

the matrix Ẑ(3,1) requires the computation of three-loop diagrams with insertions of Q1–
Q6 as shown in Figure 5. The pole and finite parts of these one-, two- and three-loop
diagrams are evaluated using the method we have described together with Paolo Gambino
in detail in [15]: We perform the calculation off-shell in an arbitrary Rξ gauge which allows
us to explicitly check the gauge-parameter independence of the mixing among physical
operators. To distinguish between IR and UV divergences we follow [17,18] and introduce
a common mass M for all fields, expanding all loop integrals in inverse powers of M . This
makes the calculation of the UV divergences possible even at three loops, as M becomes
the only relevant internal scale and three-loop tadpole integrals with a single non-zero
mass are known [18, 32]. On the other hand, this procedure requires to take into account

insertions of the non-physical operators N (1)
1 and N (2)

1 –N (2)
10 , as well as of appropriate

counterterms of dimension-three and four, some of which explicitly break gauge invariance.
A comprehensive discussion of the technical details of the renormalization of the effective
theory and the actual calculation of the operator mixing is given in [15].

Having summarized the general formalism and our method, we will now present our
results for an arbitrary number of quark flavors denoted by f . For completeness we start
with the regularization- and renormalization-scheme independent matrix γ̂(0), which is

14

s       Q5          ds  Q5    d s       Q5          d

O5,6 = (s̄idj)V-A

P
u,d,s(q̄kql)V+A

Om
5,6 = (s̄i�µ�⌫�⇢PLdj)V-A

P
u,d,s(q̄k�

µ�⌫�⇢ql)
No trace of 

𝛄5 

28



Charm Matching NLO
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O1 & O2 have the largest Wilson Coefficients.

Only one type of s → d gluon
diagram for O1 & O2

There are no one-light-particle-irreducible  diagrams for s→ d ū u.

 No evanescent operators are generated at one-loop.

We perform an off-shell matching:
expanding in external momentum O(k2)

O31 = 1
g s̄L�

µT abLD⌫Ga
µ⌫ +O4

O4 = (s̄L�µT abL)
P

q(q̄�
µT aq)

d

s

g
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NNLO Matching
There are Q1 & Q2 have the largest Wilson Coefficients.

The calculation produces several types of structures,

(s̄i�⌫T
a
ijPLdj)G

a
µk

µ
1 k

⌫
2(s̄i�

µPLT
a
ijdj)G

a
µk

2
1 ...

– more than operators.

s

d

gg

d

s

g

g
q

q

O1 / O2
O1 / O2
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Renormalisation f=4

Our procedure: Full (f=4) theory is still divergent after 
renormalisation.

Counterterm matrix element

vanishing for ms = md = mu = 0

O1/2



Vanishing f=4 matrix element 

Renormalisation f=3

32

Will be canceled in f=3 theory by
One-loop matching coefficient × one-loop operator mixing

Above sub-diagram → effective O4 Wilson Coefficient (f=3)
→ The renormalisation C4 Z4,i Oi cancels divergence.

Afull = Aeff results then in finite threshold corrections 

Counterterm matrix element

vanishing for ms = md = mu = 0



Results f=3
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Afull = Aeff results in finite matching.

Additional Check: All results can be projected onto the 
Physical and EOM vanishing Operator Basis.

The log(μ) dependence cancels analytically.

Note: Evanescent Operators only contribute in f=4 theory 
at NNLO

How to determine the residual uncertainty?



New Physics Operators
An SU(2)xU(1) invariant operator – 
written in terms of 2nd and 1st 
generation doublets SL & DL – 

generates a s-d-Z penguin

Correlated effects in KL →π0 ῡ υ

Correlation broken if there are 
contributions from magnetic
operators and (from Z‘ ...)

Also Re A0  could be modified?
34

i(S̄L�
µDL)(�

†$Dµ�)

! -vMZZµ(s̄L�
µdL)

+up-type quarks

�S̄L�
µ⌫TadRG

a
µ⌫ !

v/
p

2s̄L�µ⌫TadRG
a
µ⌫



New Physics in Re A0
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6 BSM physics in "0/" 22
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Figure 2: "0/" as a function of B(1/2)
6

, for three values of H defined in the text.

of B(1/2)
6

for H = 0.7 (blue), H = 1.0 (black), and H = 1.4 (red). We see that taking
the RBC-UKQCD central value for ReA

0

to be the true SM prediction, the agreement
between theory and data for "0/" is worsened – and compensating for this requires even

larger values of B(1/2)
6

than in the SM. Conversely, taking the large-N central value at
face value one observes a slight improvement (reduction) of the tension in "0/" by means
of an upward shift. But in both cases, the e↵ect is not huge, dwarfed by the uncertainty
in B

(1/2)
6

, and reconciling theory and experiment still requires B
(1/2)
6

> 1. We conclude
that CP-conserving data does not favour a scenario of BSM in ReA

0

, although there is
sizable room for it. A similar discussion could be given for NP in ReA

2

.

6.2 BSM physics in ImA0,2

The result obtained in our paper that "0/" in the SM is significantly below the ex-
perimental data has an impact on various NP models. This is in particular the case for
models in which there is a strong correlation between "0/" and the branching ratios for
rare decays K+ ! ⇡+⌫⌫̄ and KL ! ⇡0⌫⌫̄. Such a correlation has been stressed first in [45]
and investigated in many papers since then. See [46] and references to earlier literature
therein.

In several models, like littlest Higgs model with T-parity (LHT) [47], and generally
Z–models with new FCNCs, only in left-handed currents [20, 48], enhancement of the
branching ratio for KL ! ⇡0⌫⌫̄ is significantly constrained by "0/" because in these
models such an enhancement is correlated with the suppression of "0/" with respect to
the SM. This is also the case of K+ ! ⇡+⌫⌫̄ but as K+ ! ⇡+⌫⌫̄ receives in addition to
imaginary parts of the relevant amplitudes also the real parts, this correlation is much less
pronounced. Therefore in such models in order to have large enhancements of KL ! ⇡0⌫⌫̄

H =
(ReA0)SM
(ReA0)EXP

Suppose there is New Physics in Re A0 :

H = 0.7
H = 1.0
H = 1.4


