Future developments of Light-Cone Sum Rules Prospects for global determinations of |V_{ub}|

Danny van Dyk Technische Universität München

2nd Lattice Meets Continuum Workshop Siegen 20.09.2017

Disclaimer

What this talk is:

- expressing my impression of where LCSRs can be headed
- relying on the state of the literature
- presenting lower limits on accuracies

What this talk is not:

- not presenting new results
- not providing usable results (all numbers / plots shown herein are simulations only)

Principle of QCD sum rules in a nut shell

- contrary to what some colleagues say, sum rules are not a form of "black magic"
- infers knowledge of more exclusive hadronic matrix element f
 - construct artificial correlation functions ${\cal F}$

$$\mathcal{F}(k^2) \sim \int \mathrm{d}^4 x \, e^{ik \cdot x} \langle \mathbf{0} | \mathcal{T}\{J_1(x), J_2(0)\} | \overline{B} \rangle$$
$$\sim \int \mathrm{d}\omega \sum_{n,t} \left(\frac{\alpha_s}{4\pi}\right)^n \mathrm{tr}\{T_{n,t} \mathcal{M}_t(\omega)\}$$

- phase space (k) chosen to ensure light-cone dominance of T-product
- less exclusive hadronic matrix elements $\langle 0|\overline{q}(x)\Gamma b_v(0)|\overline{B}\rangle$
- perturbatively calculable quantities $T_{n,t}$
- relate ${\mathcal F}$ to the quantitiy of interest within a dispersion relation

$$\mathcal{F}(k^2) \sim \frac{f}{m^2 - k^2} + \int \mathrm{d}s \frac{\rho^{\text{cont.}}(s)}{s - k^2}$$

- spectral information taken from from experimental data

Motivation

- in order to extract $\left|V_{ub}\right|$ from present and future experimental data we need information on the relevant hadronic matrix elements
 - genuine non-perturbative quantities
 - for this talk: infer information from Light-Cone Sum Rules (LCSRs)
 - for the lattice perspective, wait for Andreas' talk hereafter
- Light-Cone Sum Rules (LCSRs) currently provide complementary information to lattice QCD
 - $-\,$ probe different region of phase space, where final state meson is energetic in the $B\,$ rest frame
 - status quo of $B \to \pi, \, B \to K$ form factors: complementarity expected to stay for some time
- what are the prospects for developments of LCSRs in the future?

What we should aim for

- global analysis of exclusive $b \rightarrow u \ell \nu$ transitions:
 - $B \rightarrow \pi \ell \nu$
 - $B \to \pi \pi \ell \nu$
 - $B \rightarrow \gamma \ell \nu$
 - $B \rightarrow \tau \nu$
- infer hadronic matrix elements exclusively from LCSRs (and f_B from two-point sum rules)
 - \Rightarrow only use data in LCSR-accessible phase space
 - benefit over lattice: semileptonic decays have larger partial rates in LCSR-accessible phase space
 - fully complementary to the lattice analyses
 - extrapolation to lattice (e.g. via z-expansion) only a-posteriori

De-Motivation

- light-meson LCSRs have a large proliferation of nuisance parameters
- for $B \rightarrow \pi$ form factor study [e.g. Imsong/Khodjamirian/Mannel/DvD 1409.7816]
 - 7 parameters for π -LCDAs
 - 1 threshhold
- for $B \rightarrow V$, in order to achieve the same level of sophistication
 - twice as many LCDAs \Rightarrow twice as many LCDA parameters
 - 3 threshholds: one per form factor (4 if semitauonic decays are considered)
- analysis involving $B \to \tau \nu$ and $B \to \{\pi, \rho, \omega\} \ell \nu$ would require > 50 parameters
 - hard but not impossible to do in a global analysis
- however: no benefit from global analysis
 - little to no correlations among nuisance parameters!

for this talk: consider global analysis using B-LCSRs only

What we should worry about

- LCSRs rely on information on *B*-meson Light-Cone Distribution Amplitudes (LCDAs)
 - expectation: we can infer LCDAs from $\mathcal{B}(B^- \to \gamma \ell^- \overline{\nu})$
 - **Q** how sensitive are we to the leading-twist *B*-meson LCDA?
 - Q are there ways to improve the present sensitivity?

- LCSRs rely on modelling of the continuum contributions
 - usually simple "pole + step function" models
 - Q are there ways to improve this modelling?

Determination of LCDA parameter(s) from $B^- \rightarrow \gamma \ell^- \overline{\nu}$

2-particle LCDAs: inverse (logarithmic) moments

Leading-twist 2-particle LCDA ϕ_+ defined previously during this workshop [see A. Rusov's and V. Braun's talks]

Hadronic matrix elements for $B \rightarrow \gamma \ell \nu$ depend to leading-twist and NLL accuracy on only three moments of the ϕ_+ distribution amplitude [Beneke/Rohrwild 1110.3228]

$$\frac{1}{\lambda_{B,+}(\mu)} \equiv \int_0^\omega \frac{\mathrm{d}\omega}{\omega} \phi_+(\omega;\mu)$$
$$\sigma_{B,+}^{(n)}(\mu) \equiv \lambda_{B,+}(\mu,\mu_0) \int_0^\omega \frac{\mathrm{d}\omega}{\omega} \ln^n \frac{\mu_0}{\omega} \phi_+(\omega;\mu)$$

prospect to extract $\lambda_{B,+}$ from measurements of the rate [e.g. Beneke/Rohrwild 1103.228] caveat: potentially large soft-contributions if $\lambda_{B,+} < 0.3 \,\text{GeV}$ [Wang 1609.09813]

Higher twist and 3-particle LCDAs

- work by V. Braun and collaborators is a game changer:

$$\begin{split} \phi_{+}(\omega) &= \omega f(\omega) \\ \phi_{3}(\omega_{1},\omega_{2}) &= -\frac{1}{2} \varkappa (\lambda_{E}^{2} - \lambda_{H}^{2}) \, \omega_{1} \omega_{2}^{2} \, \partial_{\omega_{2}} f(\omega_{1} + \omega_{2}) \\ \psi_{4}(\omega_{1},\omega_{2}) &= \varkappa \lambda_{E}^{2} \, \omega_{1} \omega_{2} \, f(\omega_{1} + \omega_{2}) \\ \widetilde{\psi}_{4}(\omega_{1},\omega_{2}) &= \varkappa \lambda_{H}^{2} \, \omega_{1} \omega_{2} \, f(\omega_{1} + \omega_{2}) \\ 2\omega_{1} \, \phi_{4}(\omega_{1},\omega_{2}) &= \omega_{2} \left[\psi_{4}(\omega_{1},\omega_{2}) + \widetilde{\psi}_{4}(\omega_{1},\omega_{2}) \right] \end{split}$$

[V. Braun's talk yesterday, p. 21]

- make any choice of $f(\omega)$ (which introduces model-dependency!)
- due to the EOM our knowledge of $\lambda_{B,+}$ furthers our knowledge of all LCDAs up to and including twist 4.
- caveat: only holds at $O\left(lpha_{s}^{0}
 ight)$ / large N_{C} limit

Q: how sensitive are we to ϕ_+ / its inverse moments?

 $d\mathcal{B}(B \to \gamma \ell \nu)/dE_{\gamma}$ only probes $|V_{ub}|f_B/\lambda_{B,+}!$ Answer: Branching ratio alone is not sensitive at all!

Rescue comes at hand of normalisation to $\mathcal{B}(B \to \tau \nu)$ [Braun/Khodjamirian 1210.4454]

- in absence of experimental results on this ratio a "global" analysis is required
- fit for $|V_{ub}|f_B$ and $\lambda_{B,+}$ simultaneously
- results on the ratio will likely benefit from cancellation of some of the experimental uncertainties

Combining $B \to \gamma \ell \nu$ with $B \to \tau \nu$

schematically:

$$rac{\mathcal{B}(B o \gamma \ell
u)}{\mathcal{B}(B o au
u)} \propto rac{1}{\lambda_{B,+}} + ext{soft contributions}$$

theory

 $B \to \tau \nu$

- only used to remove product $|V_{ub}| f_B$

 $B \to \gamma \ell \nu$

- hard contrib. known to NLL precision [Beneke/Rohrwild 1110.3228]
- soft contrib. known in disp. approach [Braun/Khodjamirian 1210.4454]
 3-particle contr. [Wang 1609.09813]

fit yields lower limit on the uncertainty

 $\sigma(\lambda_{B,+}) = 0.03 \, \mathrm{GeV}$

experiment

- expected uncertainty on $B \rightarrow \tau \nu$ for Belle II: 3% [B2TIP]

[Ball/Braun 1210.4453]

- expected uncertainty on $B \rightarrow \mu \nu$ for Belle II: 7% [B2TIP]
- no expected uncertainty on $B\to\gamma\ell\nu$ for Belle II yet
 - photons not a problem for Belle II!
 - $\begin{array}{l} \left. \mathcal{B}(B \rightarrow \gamma \ell \nu) \right|_{E\gamma > 1.7 \, \text{GeV}} \\ \sim \mathcal{B}(B \rightarrow \mu \nu) \end{array}$
 - not unreasonable to assume uncertainty of $\sim 10\%$ (assuming $\lambda_{B,+}\simeq 0.35\,{\rm GeV})$

[assuming $\lambda_{B,+} = 0.35 \,\text{GeV}$]

Q: are there ways to improve the sensitivity?

Specifically:

- how to maximize amount of information inferred from $B \to \gamma \ell \nu$?
- two suggestions come to mind
 - moments of the photon energy

$$M_k \equiv \int_{E_{\gamma,\min}}^{M_B/2} \mathrm{d}E_{\gamma} \frac{\mathrm{d}\Gamma(B \to \gamma \ell \nu)}{\mathrm{d}E_{\gamma}} \left(\frac{2E_{\gamma}}{M_B}\right)^k \tag{1}$$

- angular analysis of the decay

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d} E_\gamma\,\mathrm{d} E_\ell} \to \frac{\mathrm{d}^2\Gamma}{\mathrm{d} E_\gamma\mathrm{d}\cos\theta_\ell}$$

Moments of photon energy spectrum

- in rate-normalised observables, any sensitivity to $\lambda_{B,+}$ stems from interference of non- $\lambda_{B,+}$ -dep. terms with $\lambda_{B,+}$ -dep. terms
- decay rate depends on combination $|F_A|^2 + |F_V|^2$
- interferences cancel to larged extent in this combination

Angular distribution of $B \rightarrow \gamma \ell \nu$

- why not look into the angular distribution of this $1 \rightarrow 3$ decay? Maximises exploitation of data in semi-leptonic decays!
- can be easily included in global analysis

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x_\gamma\,\mathrm{d}x_\ell} \propto (1-x_\gamma)\left[\left(1-x_\nu\right)^2\left(F_A+F_V\right)^2+\left(1-x_\ell\right)^2\left(F_A-F_V\right)^2\right]$$

where $x_i \equiv 2E_i/M_B$, $x_\nu = 2 - x_\gamma - x_\ell$

- using
$$1 - x_{\ell(\nu)} = x_{\gamma} (1 \pm \cos \theta_{\ell})/2$$
 obtain angular distribution

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d}x_{\gamma} \,\mathrm{d}\cos \theta_{\ell}} \propto (1 - x_{\gamma}) \, x_{\gamma}^3 \left[(1 + \cos^2 \theta_{\ell}) \left(|F_A|^2 + |F_V|^2 \right) - 4 \cos \theta_{\ell} \operatorname{Re} F_A^* F_V \right]$$

- beside rate, only further observables is forward-backward asymmetry $A_{\rm FB}$

$$A_{\mathsf{FB}}(E_{\gamma}) \equiv -\frac{3}{2} \, \frac{\operatorname{Re} F_A^* F_V}{|F_A|^2 + |F_V|^2}$$

Angular distribution of $B \rightarrow \gamma \ell \nu$

- use hypothetical measurements of binned $$A_{\rm FB}$$

- [1.7 GeV, 2.0 GeV]
- [2.0 GeV, 2.3 GeV]
- $[2.3 \, \text{GeV}, \, M_B/2]$
- assume a lower limit of 5% on the uncertainty in each bin

fit yields a lower limit on the precision:

 $\sigma(\lambda_{B,+}) = 0.05 \,\text{GeV}$ [assuming $\lambda_{B,+} = 0.35 \,\text{GeV}$]

Modelling the continuum spectrum

$B \to \pi$ sum rule as an example

only 2-particle contributions and for $q^2=0$ [Khodjamirian/Mannel/Offen hep-ph/0611193]

$$f_+(0) \propto \int_0^{s_0^\pi} \exp(-s/M^2) \phi_-(s/M_B) +$$
 3-particle contr.

- threshold parameter s_0^{π} is a "reparametrization of our ignorance"
- information on s_0 crucial for determination of the form factor

Daughter sum rule for s_0^{π} determination

only 2-particle contributions and for $q^2=0$ [Khodjamirian/Mannel/Offen hep-ph/0611193]

– define s moments of a sum rule (again $B \rightarrow \pi$ as an example)

$$\langle s^k \rangle \equiv \int_0^{s_0^\pi} s^k \exp(-s/M^2) \phi_-(s/M_B) + 3$$
-particle contr.

- Quark Hadron Duality (QHD) motivates equality first *s* moment of OPE result and hadronic model
- technically can be done using derivative with respect to Borel parameter
- first moment can be used witin a Bayesian framework to reduce uncertainties [demonstrated for π-LCSRs in Imsong/Khodjamirian/Mannel/DvD 1409.7816]
- naive result on normalised first moment: m^2 , where m is the mass of the interpolated state
- proof of principle for incorporation within a statistical framework
 - B-meson interpolation
 - central value taken from experimental results on $M_B\pm1\%$
 - uncertainty inflated by factor 350, due to lack of information on spectrum of interpolating current

Daughter sum rules for *B***-LCSRs**

– $B \to \pi$ literature uses threshhold $s_0^\pi = 0.7\,{\rm GeV^2} \simeq [0.83\,{\rm GeV}]^2$

[Khodjamirian/Mannel/Offen hep-ph/0611193]

- reaches beyond 3π -threshhold, which starts at $\sim 0.18 \,\text{GeV}^2 \simeq \left[0.42 \,\text{GeV}\right]^2$
- suggests that first moment of the sum rule should be larger than M_π^2
- additional contributions stem from $B\to 3\pi$ and even $B\to 5\pi$ form factors
- spectral information from $\tau \to [3\pi, 5\pi]\nu_\tau$ can help pinning down first moment of the sum rule

Benefits within global analysis in $B \rightarrow V \ell \nu$

- full angular distribution will allow to constrain ratios of the form factors
 [e.g. Faller/Feldmann/Khodjamirian/Mannel/DvD 1310.6660]
- for a given LCDA model, ratios of the form factors strongly depend on the threshhold parameters
- very useful as cross check of the inputs / validation of the LCDA model

Summary

my personal opinion on future developments and prospects for LCSRs

- light-meson LCSRs will not benefit from combination in global analyses
 - should be used individually, and $\left|V_{ub}\right|$ averaged a-posteriori
- B-LCSRs will benefit from global analyses
 - however, benefits will not overcome inherently larger theory uncertainties with respect to *B*-LCDA inputs
- input(s) for *B*-LCSRs based on data will keep being rather uncertain
 - minimal uncertainty of 30...50 MeV
 - more realistically: 50...75 MeV